Answer:
high, low
Explanation:
- Energy always flows from a higher level to a lower level.
- It is analogous to the waterfall where waterfalls from a higher level to a lower level.
- So in the case of the pressure of the gas, when there are any numbers of molecules in a given volume of space. The gas is said to be at high pressure.
- When there are fewer molecules in the given volume. The gas is said to be at lower pressure.
- Due to a large number of atoms, the high-pressure gas exerts more force on the container than the force exerted by the low-pressure gas.
- If a hose is connected between these two containers, gas rushes from high pressure to the low pressure. Since the force exerted by the high-pressure gas is greater than that of low-pressure gas.
So, the wind tends to move from high-pressure areas to low pressure.
Answer:
2/3
Explanation:
In the case shown above, the result 2/3 is directly related to the fact that the speed of the rocket is proportional to the ratio between the mass of the fluid and the mass of the rocket.
In the case shown in the question above, the momentum will happen due to the influence of the fluid that is in the rocket, which is proportional to the mass and speed of the same rocket. If we consider the constant speed, this will result in an increase in the momentum of the fluid. Based on this and considering that rocket and fluid has momentum in opposite directions we can make the following calculation:
Rocket speed = rocket momentum / rocket mass.
As we saw in the question above, the mass of the rocket is three times greater than that of the rocket in the video. For this reason, we can conclude that the calculation should be done with the rocket in its initial state and another calculation with its final state:
Initial state: Speed = rocket momentum / rocket mass.
Final state: Speed = 2 rocket momentum / 3 rocket mass. -------------> 2/3
Answer:
see below
Explanation:
You will need t find the volume of the sphere
4/3 pi r^3 divide into the mass
1431 / (4/3 pi (5.8)^3) = 14 gm /cm^3