The first three choices: a, b and c can be considered reconstruction except the last one which is letter d. I'm not really certain what reconstruction is, but judging from the patterns of the first three choices, reconstruction could mean that an inference is made after a part of an event has proved that event to be true.
Answer:
Explanation:
Since the surface is frictionless therefore there will be no friction force on block but there will be weight of block which we can divide in to two components i.e. mgcosθ &mgsinθ which is perpendicular and parallel to the surface respectively.
In response to mgcosθ ramp will apply a normal force to the block which will be of equal magnitude to that of mgcosθ.
Therefore Ramp will apply a Force of mgcosθ on block where m is the mass of block.
Answer:
On the standing waves on a string, the first antinode is one-fourth of a wavelength away from the end. This means

This means that the relation between the wavelength and the length of the string is

By definition, this standing wave is at the third harmonic, n = 3.
Furthermore, the standing wave equation is as follows:

The bead is placed on x = 0.138 m. The maximum velocity is where the derivative of the velocity function equals to zero.


For this equation to be equal to zero, sin(59.94t) = 0. So,

This is the time when the velocity is maximum. So, the maximum velocity can be found by plugging this time into the velocity function:

Expansion work against constant external pressure: w=-pex Δ Δ V 3. The attempt at a solution . I tried following that. Because Vf>>Vi, and Vf=nRT/pex, then w=-pex x nRT/pex=-nRT (im assuming n is number of moles of CO2?). 1 mole of CaCO3 makes 1 mole of CO2, so plugging in numbers, I get 8.9kJ, although I dont use the 1 atm pressure at all
The power of the lamp would be calculated with the equation of ohm laws. P = U x I = 122V x 0.1A = 12.2W