Answer:
C
Explanation:
The strong force holds together quarks, the fundamental particles that make up the protons and neutrons of the atomic nucleus, and further holds together protons and neutrons to form atomic nuclei. As such it is responsible for the underlying stability of matter.
-- The car starts from rest, and goes 8 m/s faster every second.
-- After 30 seconds, it's going (30 x 8) = 240 m/s.
-- Its average speed during that 30 sec is (1/2) (0 + 240) = 120 m/s
-- Distance covered in 30 sec at an average speed of 120 m/s
= <span> 3,600 meters .</span>
___________________________________
The formula that has all of this in it is the formula for
distance covered when accelerating from rest:
Distance = (1/2) · (acceleration) · (time)²
= (1/2) · (8 m/s²) · (30 sec)²
= (4 m/s²) · (900 sec²)
= 3600 meters.
_________________________________
When you translate these numbers into units for which
we have an intuitive feeling, you find that this problem is
quite bogus, but entertaining nonetheless.
When the light turns green, Andy mashes the pedal to the metal
and covers almost 2.25 miles in 30 seconds.
How does he do that ?
By accelerating at 8 m/s². That's about 0.82 G !
He does zero to 60 mph in 3.4 seconds, and at the end
of the 30 seconds, he's moving at 534 mph !
He doesn't need to worry about getting a speeding ticket.
Police cars and helicopters can't go that fast, and his local
police department doesn't have a jet fighter plane to chase
cars with.
♥ If the wind is strong enough it can do so.
♥ By having a strong enough wind you can blow out the fire before the flame can consume any more vapor.
♥ If the wind is fast enough, like a birthday cake candle for example, the wind will burn out.
I would have to say B failed because I think I read something about it being only 2law not 3
Answer:
50%
Explanation:
Humidity is the amount water vapor present in the atmosphere.
Relative humidity is defined as the ratio of partial water vapor present in air to the actual water vapor at a particular temperature. It is expressed in percentage and the higher the percentage RH, the more the saturated water vapor present in the atmosphere and vice versa.
It is expressed mathematically as shown;
RH = actual water vapor in air/saturated water vapor × 100%
If the actual water vapor in the air was 4 grams per cubic meter and the air's capacity to hold water vapor was 8 grams per cubic meter
Actual water vapor = 4g/cm³
Air's water capacity (saturated water vapor) = 8g/cm³
RH = 4/8×100
RH = 50%