1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Xelga [282]
3 years ago
5

A total Δν of 15 km/s is required to achieve an interplanetary mission. The proposed rocket has two stages. The first stage alon

e has a mass of 1000 tonnes and consists of 10 solid rocket boosters and a liquid rocket motor. The liquid rocket has a specific impulse of 300 s and a fuel mass flow rate of 1500 kg/s. The solid rocket boosters have a specific impulse of 250 s and a fuel mass flow rate of 200 kg/s. The first stage burn time is 1 minute. The first stage is jettisoned immediately after burn-out. The second stage has an initial mass of 150 tonnes. The second stage motor provides an effective exhaust velocity of 4 km/s and has a structural coefficient of 0.05. The rocket carries a 2 tonne payload. a. What is the jettisoned mass of the first stage?
Physics
1 answer:
AlexFokin [52]3 years ago
3 0

Answer:

102000 kg

Explanation:

Given:

A total Δν = 15 km/s

first stage mass = 1000 tonnes

specific impulse of liquid rocket =  300 s

Mass flow rate of liquid fuel = 1500 kg/s

specific impulse of solid fuel = 250 s

Mass flow of solid fuel = 200 kg/s

First stage burn time = 1 minute = 1 × 60 seconds = 60 seconds

Now,

Mass flow of liquid fuel in 1 minute = Mass flow rate × Burn time

or

Mass flow of liquid fuel in 1 minute = 1500 × 60 = 90000 kg

Also,

Mass flow of solid fuel in 1 minute = Mass flow rate × Burn time

or

Mass flow of solid fuel in 1 minute = 200 × 60 = 12000 kg

Therefore,

The total jettisoned mass flow of the fuel in first stage

= 90000 kg +  12000 kg

= 102000 kg

You might be interested in
Mention one life application on density ​
kow [346]

One well-known application of density is determining whether or not an object will float on water. If the object's density is less than the density of water, it will float; if its density is less than that of water, it will sink.In fact, submarines dive below the surface of the water by emptying their ballast tanks

5 0
2 years ago
How long does it take a car to cross a 20m bridge if it starts from rest and accelerates at 5 m/s^2?
polet [3.4K]

The correct answer is 2.8s

5 0
3 years ago
Now let’s apply the work–energy theorem to a more complex, multistep problem. In a pile driver, a steel hammerhead with mass 200
andrew11 [14]

Answer:

a) v = 7.67

b) n = 81562 N

Explanation:

Given:-

- The mass of hammer-head, m = 200 kg

- The height at from which hammer head drops, s12 = 3.00 m

- The amount of distance the I-beam is hammered, s23 = 7.40 cm

- The resistive force by contact of hammer-head and I-beam, F = 60.0 N

Find:-

(a) the speed of the hammerhead just as it hits the I-beam and

(b) the average force the hammerhead exerts on the I-beam.

Solution:-

- We will consider the hammer head as our system and apply the conservation of energy principle because during the journey of hammer-head up till just before it hits the I-beam there are no external forces acting on the system:

                                   ΔK.E = ΔP.E

                                  K_2 - K_1 = P_1- P_2

Where,  K_2: Kinetic energy of hammer head as it hits the I-beam

             K_1: Initial kinetic energy of hammer head ( = 0 ) ... rest

             P_2: Gravitational potential energy of hammer head as it hits the I-beam. (Datum = 0)

             P_1: Initial gravitational potential energy of hammer head      

- The expression simplifies to:

                                K_2 = P_1

Where,                     0.5*m*v2^2 = m*g*s12

                                v2 = √(2*g*s12) = √(2*9.81*3)

                                v2 = 7.67 m/s

- For the complete journey we see that there are fictitious force due to contact between hammer-head and I-beam the system is no longer conserved. All the kinetic energy is used to drive the I-beam down by distance s23. We will apply work energy principle on the system:

                               Wnet = ( P_3 - P_1 ) + W_friction

                               Wnet = m*g*s13 + F*s23

                               n*s23 = m*g*s13 + F*s23

Where,    n: average force the hammerhead exerts on the I-beam.

               s13 = s12 + s23

Hence,

                             n = m*g*( s12/s23 + 1) + F

                             n = 200*9.81*(3/0.074 + 1) + 60

                             n = 81562 N

                               

                                                   

6 0
3 years ago
Daffy Duck is standing 6.8 m away from Minnie Duck. The attractive gravitational force between them is 5.4x10-8 N. If Daffy Duck
artcher [175]

Answer:

432.78 Kg

Explanation:

From the question given above, the following data were obtained:

Distance apart (r) = 6.8 m

Force of attraction (F) = 5.4×10¯⁸ N

Mass of Daffy Duck (M₁) = 86.5 kg

Mass of Minnie Duck (M₂) =?

NOTE: Gravitational constant (G) = 6.67×10¯¹¹ Nm²/Kg²

The mass of Minnie Duck can be obtained as follow:

F = GM₁M₂ / r²

5.4×10¯⁸ = 6.67×10¯¹¹ × 86.5 × M₂ / 6.8²

5.4×10¯⁸ = 6.67×10¯¹¹ × 86.5 × M₂ / 46.24

Cross multiply

6.67×10¯¹¹ × 86.5 × M₂ =5.4×10¯⁸ × 46.24

Divide both side by 6.67×10¯¹¹ × 86.5

M₂ = 5.4×10¯⁸ × 46.24 / 6.67×10¯¹¹ × 86.5

M₂ = 432.78 Kg

Therefore, the mass of Minnie Duck is 432.78 Kg

8 0
3 years ago
Which of the following Resistors A, B, C or D, would use the least power? Make
Westkost [7]

i think the answer is D 10.0

4 0
3 years ago
Other questions:
  • Which type of plate boundary is most closely associated with the formation of new ocean floor?
    11·1 answer
  • Ball A is thrown vertically upwards with a velocity of v0 . Ball B is thrown upwards from the same point with the same velocity
    7·1 answer
  • A scientific theory is:
    14·1 answer
  • Analyze how friction can be both a positive and negative aspect on our lives
    11·1 answer
  • A 40 kg-skier starts at the top of a 12-meter high slope. At the bottom, she is traveling 10 m/s. How much energy does she lose
    13·2 answers
  • 4. A spring is stretched 0.5 m from equilibrium. The force constant (k) of the
    12·2 answers
  • What is the maximum power that can be delivered by a 1.4-cm-diameter laser beam propagating through air
    14·1 answer
  • A 100 Ω resistor is connected in series with a 47 µF capacitor and a source whose maximum voltage is 5 V, operating at 100.0 Hz.
    8·1 answer
  • How much work must be done in the car to slow it from 100km/h to 50km/h
    15·1 answer
  • Draw a simple circuit that lights up a bulb. ​
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!