Answer:
The answer to your question is : letter B. 0.25 atm
Explanation:
To solve this problem we need to use the combined gas law:
<u>P₁V₁</u> = <u>P₂V₂</u>
T₁ T₂
Data
P1 = 0.99 atm V1 = 2 l T1 = 273K
P2 = ? V2 = 4 l T2 = 137K
Now, the clear P2 from the equation and we get
P2 = P1V1T2 / T1V2
Substitution P2 = (2 x 0.99 x 137)/(273 x 4)
P2 = 271.26 / 1092
Result P2 = 0.248 atm ≈ 0.25 atm
Answer:
1, 3, 2
Explanation:
N2 + H2 → NH3
I usually find that the best way to systematically balance an equation by inspection is to start with the most complicated-looking formula and then balance atoms in the order:
- All atoms other than O and H
- O
- H
(a) The most complicated formula is NH3.
(b) Balance N.
We have 1 H in NH3, but 2 N on the left. We need 2 N on the right. Put a 1 in front of N2 and a 2 in front of NH3.
1N2 + H2 → 2NH3
(c) Balance H.
We have fixed 6 H on the right, so we need 6 H on the left. Put a 3 in front of H2.
1N2 + 3H2 → 2NH3
The equation is now balanced, and the coefficients are 1, 3, 2.
The answer is Sliver reacts with nitric acid to produce a gas.
<span>Saturated sodium chloride
is used to transfer the product rather than water since it is not polar and
rinsing the product with water would revert any 4-methylcyclohexene back to
4-methylcyclohexanol in the Hickman Head and thus lowering the percent yield;
using water would shift the equilibrium towards the reactants. Also
sodium chloride removes the small amount of phosphoric acid and also a small
amount of water. If one were to add water, both 4-methylcyclohexene and
phosphoric acid are partially soluble making difficult to remove the water
later; sodium chloride makes the water less reactive so easier to remove by
making the aqueous later more polar.</span>
Answer:
carry blood away from the heart