Answer:
Aqueous layer (1 M HCI)
Explanation:
First of us I want to remind you of the cliché in chemistry that like dissolves like. In solvent extraction, a mixture is dissolved in a system consisting of two immiscible solvents. One layer is organic while the other layer is aqueous.
Polar substances partition in the aqueous layer while nonpolar substances partition in the organic layer.
Since Copper sulfate is ionic, we will find it in the aqueous layer according to the old chemistry cliche.
Answer:
yes
Explanation:
is that is the alteration of a planet on its orbit around the sun depends upon the mass of the Sun and the inverse square of the planets distance from the Sun. As a planet moves further away in its orbit around the Sun, the gravitational force exerted by the sun on the planet decreases
Answer:
0.960 m
Explanation:
Given data
- Mass of the solute: 27.9 g
- Molar mass of the solute: 233.2 g/mol
- Mass of the solvent: 125.0 g = 0.1250 kg
First, we will calculate the moles of solute.
27.9 g × (1 mol/233.2 g) = 0.120 mol
The molality of the compound is:
m = moles of solute / kilograms of solvent
m = 0.120 mol / 0.1250 kg
m = 0.960 m
<h3>
Answer:</h3>
2Fe(HCO₃)₃ → Fe₂(CO₃)₃ + 3H₂O + 3CO₂
<h3>
Explanation:</h3>
- A decomposition reaction is one in which a large compound is broken down into smaller compounds or individual elements.
- The decomposition reaction Iron (iii) hydrogen carbonate yield iron (iii) carbonate, water and carbon dioxide.
Fe(HCO₃)₃ → Fe₂(CO₃)₃ + H₂O + CO₂
- A balanced equation is the one in which the number of atoms of each element are equal on both side of the equation.
- Therefore; the balanced equation for the decomposition of Iron (iii) hydrogen carbonate is given by;
2Fe(HCO₃)₃ → Fe₂(CO₃)₃ + 3H₂O + 3CO₂
Depends, they are not too bad, but I wouldn't eat them anyway, even though they have supposedly 30% less fat they are still not good for you. Try eating a fruit or drinking a glass of water if you want to look out for your health!!