Answer:
B) What is the enthalpy change, ∆H, for this reaction? Show your work to receive full credit (5 points) The enthalpy change is 150. To find it we must subtract energy of products (200) & the energy of reactants (50) so 200 – 50 equals 150.
Explanation:
B) What is the enthalpy change, ∆H, for this reaction? Show your work to receive full credit (5 points) The enthalpy change is 150. To find it we must subtract energy of products (200) & the energy of reactants (50) so 200 – 50 equals 150.
<u>Given that:</u>
Ball dropped from a bridge at the rate of 3 seconds
Determine the height of fall (S) = ?
As we know that, S = ut + 1/2 ×a.t²
u =initial velocity = 0
a= g =9.81 m/s (since free fall)
S = 0+ 1/2 × 9.81 × 3²
<em> S = 44.145 m</em>
<em>44.145 m far is the bridge from water</em>
The answer is ultra violet radiation. From the air
Answer:
b. negative
Explanation:
neutrons have a negative charge and protons have a proton has a positive charge
A spring is an object that can be deformed by a force and then return to its original shape after the force is removed.
Springs come in a huge variety of different forms, but the simple metal coil spring is probably the most familiar. Springs are an essential part of almost all moderately complex mechanical devices; from ball-point pens to racing car engines.
There is nothing particularly magical about the shape of a coil spring that makes it behave like a spring. The 'springiness', or more correctly, the elasticity is a fundamental property of the wire that the spring is made from. A long straight metal wire also has the ability to ‘spring back’ following a stretching or twisting action. Winding the wire into a spring just allows us to exploit the properties of a long piece of wire in a small space. This is much more convenient for building mechanical devices.