1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Xelga [282]
3 years ago
10

2 particles having charges q1=0.500 nC and q2=8.00 nC are separated by a distance of 1.20m. at what point along the line connect

ing the two charges is the total electric field due to the two chares equal to zero?

Physics
2 answers:
laila [671]3 years ago
7 0
Refer to the figure shown below.

Charge q₁ = 0.5 nC = 0.5x10⁻⁹ C
Charge q₂ = 8 nC = 8x10⁻⁹ C
d = 1.2 m, the distance between the two charges.

x is the distance between the two charges, measured from the charge q₁.

From Coulomb's Law,
The electric field generated along x by q₁ is
E₁ = k(q₁/x²)
The electric field generated along x by q₂ is
E₂ = -k[q₂/(d-x)²]
where
k = 8.988x10⁹ (N-m²)/C² is the Coulomb constant/

When the electric field along x is zero, then
E₁ + E₂ = 0
k[q₁/x² - q₂/(d-x)²] = 0

That is,
0.5/x² = 8/(1.2 - x)²
8x² = 0.5(1.2 - x)²
16x² = 1.44 - 2.4x + x²
15x² + 2.4x - 1.44 = 0

Solve with the quadratic formula.
x = (1/30)*[-2.4 +/- √(5.76 + 86.4)]
   = 0.24 or -0.4 m

Reject the negative answer to obtain
x = 0.24 m
d-x = 0.96 m

Answer
The electric field is zero between the charges so that
(a) It is at 0.24 m from the 0.5 nC charge, and
(b) It is at 0.96 m from the 8 nC charge.

Rus_ich [418]3 years ago
4 0

The location of the point is at the distance of \boxed{0.24{\text{ m}}}from first particle and \boxed{0.96{\text{ m}}} from second particle.

Further explanation:

Here, we have to calculate the location of the point on the line which connects the both charges at which the net electric field due to these charges is zero.

Given:

Charge on the first particle \left( {{q_1}}\right) is 0.5{\text{nC}}=5\times {10^{- 10}}{\text{C}}.

Charge on the second particle \left({{q_2}}\right) is 8{\text{ nC}}=80\times{10^{-10}}{\text{C}}.

Distance between the first particle and the second particle \left(r\right) is 1.2{\text{ m}}.

Formula and concept used:

Let us assume that the point is lying in between the charges as shown in Figure 1.

For, net electric field to be zero at that point,

The electric field due to first particle’s charge will be equal to the electric field due to second particle’s charge.

The expression can be written as,

\boxed{{E_1}={E_2}}

First of all we will know about the electric field.

Electric field: The electric field at a point due to a charge is define as the amount of force experienced by a unit charge also known as test charge at that point.

E=\dfrac{1}{{4\pi{\varepsilon_0}}}\cdot \dfrac{q}{{{r^2}}}

Here, E is the electric field, q is the charge and r is the distance between charge and point at which electric field has to be measured.

Substitute the values of {\vec E_1} and {\vec E_2}

We get,

\dfrac{1}{{4\pi{\varepsilon_0}}} \cdot\dfrac{{{q_1}}}{{{x^2}}}=\dfrac{1}{{4\pi{\varepsilon_0}}} \cdot \dfrac{{{q_2}}}{{{{\left( {1.2 - x} \right)}^2}}}

Simplify the above equation,

\boxed{\dfrac{{{q_1}}}{{{{\left( x \right)}^2}}}=\dfrac{{{q_2}}}{{{{\left( {1.2 - x} \right)}^2}}}}                              …… (1)

Calculation:

Substitute 5 \times {10^{- 10}}{\text{ C}} for {q_1} and 80 \times {10^{ - 10}}{\text{ C}} for {q_2} in equation (1).

\begin{aligned}\frac{{5 \times {{10}^{- 10}}}}{{{{\left( x \right)}^2}}}&=\frac{{80\times {{10}^{- 10}}}}{{{{\left( {1.2 - x} \right)}^2}}}\\\frac{5}{{{x^2}}}&=\frac{{80}}{{{{\left( {1.2 - x} \right)}^2}}}\\5{\left( {1.2 - x}\right)^2}&=80{x^2}\\\end{aligned}

Simplify the above equation,

75{x^2} + 12x - 7.2 = 0

Solve the above equation,  

\begin{gathered}x=\frac{{-12 \pm \sqrt {{{12}^2} - 4\times75\times\left({-7.2} \right)}}}{{2 \times 75}}\\=\frac{{-12 \pm \sqrt {2304} }}{{150}}\\=\frac{{-12\pm48}}{{150}}\\\end{gathered}

Taking positive value,

\begin{aligned}x&=\frac{{ - 12 + 48}}{{150}}\\&=\frac{{36}}{{150}}\\&=0.24{\text{ m}}\\\end{aligned}

Distance of the point from the second particle will be,

\begin{aligned}\left({1.2-x}\right)&=1.2-0.24\\&=0.96{\text{ m}}\\\end{aligned}

Thus, the location of the point is at the distance of \boxed{0.24{\text{ m}}}from first particle and \boxed{0.96{\text{ m}}} from second particle.

Learn more:

1. Momentum change due to collision: brainly.com/question/9484203.  

2. Expansion of gas due to change in temperature: brainly.com/question/9979757.  

3. Conservation of momentum brainly.com/question/4033012.

Answer details:

Grade: Senior School  

Subject: Physics  

Chapter: Electric charges and fields

Keywords:

Two particles, separated by distance, point along line, zero electric field, coulomb law, charges, electric field, position vector, location of charge, 0.96m, 1m.

You might be interested in
2 m3 of an ideal gas are compressed from 100 kPa to 200 kPa. As a result of the process, the internal energy of the gas increase
rosijanka [135]

Answer:

work done is -150 kJ

Explanation:

given data

volume v1 = 2 m³

pressure p1 = 100 kPa

pressure p2 = 200 kPa

internal energy = 10 kJ

heat is transferred  = 150 kJ

solution

we know from 1st law of thermodynamic is

Q = du +W    ............1

put here value and we get

-140 = 10 + W

W = -150 kJ

as here work done is -ve so we can say work is being done on system

3 0
3 years ago
A lightbulb is rated by the power that it dissipates when connected to a given voltage. For a lightbulb connected to 120 V house
Igoryamba

Answer:

Increases, increases

Explanation:

The current is directly proportional to the voltage and inversely proportional to the resistance. The implication of this is that, whenever the voltage is increased, the current increases simultaneously. On the other hand, if the resistance is increased, the current will decrease accordingly and vice versa.

Recall that power is given by P= V^2/R where;

P= power, V= voltage and R= resistance

We can see that power and resistance are inversely related hence decreasing the resistance increases the power output of the lightbulb.

8 0
3 years ago
Which type of mixture could this illustration represent?
Oksanka [162]

Answer:

A homogeneous mixture

Explanation:

4 0
3 years ago
Read 2 more answers
6) A stone is thrown vertically upward and returns to its starting position in o 5 s,What was its initial velocity?
NikAS [45]
25m/s if you are using -10 as gravity
3 0
3 years ago
A nonconducting container filled with 25 kg of water at 23°C is fitted with a stirrer, which is made to turn by gravity acting o
Paul [167]

Explanation:

Given that,

Weight of water = 25 kg

Temperature = 23°C

Weight of mass = 32 kg

Distance = 5 m

(a). We need to calculate the amount of work done on the water

Using formula of work done

W=mgh

W=32\times9.8\times5

W=1568\ J

The amount of work done on the water is 1568 J.

(b). We need to calculate the internal-energy change of the water

Using formula of internal energy

The change in internal energy of the water equal to the amount of the  work done on the water.

\Delta U=W

\Delta U=1568\ J

The  change in internal energy is 1568 J.

(c). We need to calculate the final temperature of the water

Using formula of the change internal energy

\Delta U=mc_{p}\Delta T

\Delta U=mc_{p}(T_{2}-T_{1})

T_{2}=T_{1}+\dfrac{\Delta U}{mc_{p}}

T_{2}=23+\dfrac{1568}{25\times4.18\times10^{3}}

T_{2}=23.01^{\circ}\ C

The final temperature of the water is 23.01°C.

(d). The amount of heat removed from the water to return it to it initial temperature is the change in internal energy.

The amount of heat is 1568 J.

Hence, This is the required solution.

6 0
3 years ago
Other questions:
  • Fill in the blanks below:<br><br> Urgently need help!!!
    14·1 answer
  • When divided by △t, (vf - vi) is used to determine which characteristic? A.Speed B.Direction C. Displacement D.Acceleration
    10·1 answer
  • An inductor has inductance of 0.260 H and carries a current that is decreasing at a uniform rate of 18.0 mA/s.
    12·1 answer
  • A lead ball is dropped into a lake from a diving board 5.0 m above the water. After entering the water, it sinks to the bottom w
    12·1 answer
  • If Earth was with no tilt, would we still have seasons at all? If so, how would they be different?
    15·1 answer
  • 1. If an object of mass m collides and velocity v collides inelastically with an object of mass 3m that is initially at rest, th
    15·1 answer
  • In an experiment to estimate the acceleration due to gravity, a student drops a ball at a distance of 1 m above the floor. His l
    14·1 answer
  • A ball is kicked from the origin with an initial speed of 10 = 25.0 /, at an angle with
    15·1 answer
  • 4. A group of students made a rocket and launched it vertically upwards with velocity
    9·1 answer
  • PLEASE HELPPPPPPPPPPPP
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!