1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Xelga [282]
3 years ago
10

2 particles having charges q1=0.500 nC and q2=8.00 nC are separated by a distance of 1.20m. at what point along the line connect

ing the two charges is the total electric field due to the two chares equal to zero?

Physics
2 answers:
laila [671]3 years ago
7 0
Refer to the figure shown below.

Charge q₁ = 0.5 nC = 0.5x10⁻⁹ C
Charge q₂ = 8 nC = 8x10⁻⁹ C
d = 1.2 m, the distance between the two charges.

x is the distance between the two charges, measured from the charge q₁.

From Coulomb's Law,
The electric field generated along x by q₁ is
E₁ = k(q₁/x²)
The electric field generated along x by q₂ is
E₂ = -k[q₂/(d-x)²]
where
k = 8.988x10⁹ (N-m²)/C² is the Coulomb constant/

When the electric field along x is zero, then
E₁ + E₂ = 0
k[q₁/x² - q₂/(d-x)²] = 0

That is,
0.5/x² = 8/(1.2 - x)²
8x² = 0.5(1.2 - x)²
16x² = 1.44 - 2.4x + x²
15x² + 2.4x - 1.44 = 0

Solve with the quadratic formula.
x = (1/30)*[-2.4 +/- √(5.76 + 86.4)]
   = 0.24 or -0.4 m

Reject the negative answer to obtain
x = 0.24 m
d-x = 0.96 m

Answer
The electric field is zero between the charges so that
(a) It is at 0.24 m from the 0.5 nC charge, and
(b) It is at 0.96 m from the 8 nC charge.

Rus_ich [418]3 years ago
4 0

The location of the point is at the distance of \boxed{0.24{\text{ m}}}from first particle and \boxed{0.96{\text{ m}}} from second particle.

Further explanation:

Here, we have to calculate the location of the point on the line which connects the both charges at which the net electric field due to these charges is zero.

Given:

Charge on the first particle \left( {{q_1}}\right) is 0.5{\text{nC}}=5\times {10^{- 10}}{\text{C}}.

Charge on the second particle \left({{q_2}}\right) is 8{\text{ nC}}=80\times{10^{-10}}{\text{C}}.

Distance between the first particle and the second particle \left(r\right) is 1.2{\text{ m}}.

Formula and concept used:

Let us assume that the point is lying in between the charges as shown in Figure 1.

For, net electric field to be zero at that point,

The electric field due to first particle’s charge will be equal to the electric field due to second particle’s charge.

The expression can be written as,

\boxed{{E_1}={E_2}}

First of all we will know about the electric field.

Electric field: The electric field at a point due to a charge is define as the amount of force experienced by a unit charge also known as test charge at that point.

E=\dfrac{1}{{4\pi{\varepsilon_0}}}\cdot \dfrac{q}{{{r^2}}}

Here, E is the electric field, q is the charge and r is the distance between charge and point at which electric field has to be measured.

Substitute the values of {\vec E_1} and {\vec E_2}

We get,

\dfrac{1}{{4\pi{\varepsilon_0}}} \cdot\dfrac{{{q_1}}}{{{x^2}}}=\dfrac{1}{{4\pi{\varepsilon_0}}} \cdot \dfrac{{{q_2}}}{{{{\left( {1.2 - x} \right)}^2}}}

Simplify the above equation,

\boxed{\dfrac{{{q_1}}}{{{{\left( x \right)}^2}}}=\dfrac{{{q_2}}}{{{{\left( {1.2 - x} \right)}^2}}}}                              …… (1)

Calculation:

Substitute 5 \times {10^{- 10}}{\text{ C}} for {q_1} and 80 \times {10^{ - 10}}{\text{ C}} for {q_2} in equation (1).

\begin{aligned}\frac{{5 \times {{10}^{- 10}}}}{{{{\left( x \right)}^2}}}&=\frac{{80\times {{10}^{- 10}}}}{{{{\left( {1.2 - x} \right)}^2}}}\\\frac{5}{{{x^2}}}&=\frac{{80}}{{{{\left( {1.2 - x} \right)}^2}}}\\5{\left( {1.2 - x}\right)^2}&=80{x^2}\\\end{aligned}

Simplify the above equation,

75{x^2} + 12x - 7.2 = 0

Solve the above equation,  

\begin{gathered}x=\frac{{-12 \pm \sqrt {{{12}^2} - 4\times75\times\left({-7.2} \right)}}}{{2 \times 75}}\\=\frac{{-12 \pm \sqrt {2304} }}{{150}}\\=\frac{{-12\pm48}}{{150}}\\\end{gathered}

Taking positive value,

\begin{aligned}x&=\frac{{ - 12 + 48}}{{150}}\\&=\frac{{36}}{{150}}\\&=0.24{\text{ m}}\\\end{aligned}

Distance of the point from the second particle will be,

\begin{aligned}\left({1.2-x}\right)&=1.2-0.24\\&=0.96{\text{ m}}\\\end{aligned}

Thus, the location of the point is at the distance of \boxed{0.24{\text{ m}}}from first particle and \boxed{0.96{\text{ m}}} from second particle.

Learn more:

1. Momentum change due to collision: brainly.com/question/9484203.  

2. Expansion of gas due to change in temperature: brainly.com/question/9979757.  

3. Conservation of momentum brainly.com/question/4033012.

Answer details:

Grade: Senior School  

Subject: Physics  

Chapter: Electric charges and fields

Keywords:

Two particles, separated by distance, point along line, zero electric field, coulomb law, charges, electric field, position vector, location of charge, 0.96m, 1m.

You might be interested in
PLEASE HELP
bixtya [17]

Answer:

AS- X 3.42 Y 3. B) X Y c) x Ross TET V V. a 1.71 1.71 LLL LLL 2.42 N al

Explanation:

3 0
3 years ago
Read 2 more answers
How much heat is needed to raise the temperature of 8g of water by 20oC?
Elden [556K]
The following information are given in the question:
Mass, M = 8 g
Temperature, T = 20 degree Celsius
Specific heat of water [this value is a constant] C  = 1 c/gc
Heat, Q = ?
The formula for calculating the amount of heat required is given below:
Q = MCT = 8 * 1 * 20 = 160
Therefore, Q = 160 cal. 
<span />
7 0
3 years ago
A +2.00nc point charge is at the origin, and a second -5.00nc point charge is on the x-axis at x = 0.800m find the magnitude of
Damm [24]
You have to reduce 2.00 an5.00 I order to use the×that=0.800
3 0
3 years ago
Grant sprints 50m to the right with an average velocity of 3.0 m/s
zlopas [31]

I need help with my math

6 0
3 years ago
Need help will mark you the Brainliest
Hatshy [7]
The last one is correct (D)
8 0
3 years ago
Other questions:
  • A temperature of 34 fereheight is equal to blank kelvin
    5·2 answers
  • I need some help plz!
    8·1 answer
  • The period of a wave is 10 seconds and it’s wavelength is 2 meters. What is the wave’s speed?
    8·1 answer
  • Electrons in the beam are accelerated by the ____ fields.
    15·1 answer
  • Three ideal polarizing filters are stacked, with the polarizing axis of the second and third filters at 21 degrees and 61 degree
    5·1 answer
  • Given that the initial rate constant is 0.0191 s-1 at an initial temperature of 24°C, what would the rate constant be at a tempe
    15·1 answer
  • __________ receptors detect presence of acids in substances, whereas __________ receptors detect sodium in substances. A. Sour .
    11·2 answers
  • How far (in meters) will you travel in 3 minutes running at a rate of 6 m/s?
    11·1 answer
  • The ____ value of the overflow style keeps the element at the specified height and width, but cuts off excess content.
    6·2 answers
  • Helpp please <br>ASAP...​
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!