1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Xelga [282]
2 years ago
10

2 particles having charges q1=0.500 nC and q2=8.00 nC are separated by a distance of 1.20m. at what point along the line connect

ing the two charges is the total electric field due to the two chares equal to zero?

Physics
2 answers:
laila [671]2 years ago
7 0
Refer to the figure shown below.

Charge q₁ = 0.5 nC = 0.5x10⁻⁹ C
Charge q₂ = 8 nC = 8x10⁻⁹ C
d = 1.2 m, the distance between the two charges.

x is the distance between the two charges, measured from the charge q₁.

From Coulomb's Law,
The electric field generated along x by q₁ is
E₁ = k(q₁/x²)
The electric field generated along x by q₂ is
E₂ = -k[q₂/(d-x)²]
where
k = 8.988x10⁹ (N-m²)/C² is the Coulomb constant/

When the electric field along x is zero, then
E₁ + E₂ = 0
k[q₁/x² - q₂/(d-x)²] = 0

That is,
0.5/x² = 8/(1.2 - x)²
8x² = 0.5(1.2 - x)²
16x² = 1.44 - 2.4x + x²
15x² + 2.4x - 1.44 = 0

Solve with the quadratic formula.
x = (1/30)*[-2.4 +/- √(5.76 + 86.4)]
   = 0.24 or -0.4 m

Reject the negative answer to obtain
x = 0.24 m
d-x = 0.96 m

Answer
The electric field is zero between the charges so that
(a) It is at 0.24 m from the 0.5 nC charge, and
(b) It is at 0.96 m from the 8 nC charge.

Rus_ich [418]2 years ago
4 0

The location of the point is at the distance of \boxed{0.24{\text{ m}}}from first particle and \boxed{0.96{\text{ m}}} from second particle.

Further explanation:

Here, we have to calculate the location of the point on the line which connects the both charges at which the net electric field due to these charges is zero.

Given:

Charge on the first particle \left( {{q_1}}\right) is 0.5{\text{nC}}=5\times {10^{- 10}}{\text{C}}.

Charge on the second particle \left({{q_2}}\right) is 8{\text{ nC}}=80\times{10^{-10}}{\text{C}}.

Distance between the first particle and the second particle \left(r\right) is 1.2{\text{ m}}.

Formula and concept used:

Let us assume that the point is lying in between the charges as shown in Figure 1.

For, net electric field to be zero at that point,

The electric field due to first particle’s charge will be equal to the electric field due to second particle’s charge.

The expression can be written as,

\boxed{{E_1}={E_2}}

First of all we will know about the electric field.

Electric field: The electric field at a point due to a charge is define as the amount of force experienced by a unit charge also known as test charge at that point.

E=\dfrac{1}{{4\pi{\varepsilon_0}}}\cdot \dfrac{q}{{{r^2}}}

Here, E is the electric field, q is the charge and r is the distance between charge and point at which electric field has to be measured.

Substitute the values of {\vec E_1} and {\vec E_2}

We get,

\dfrac{1}{{4\pi{\varepsilon_0}}} \cdot\dfrac{{{q_1}}}{{{x^2}}}=\dfrac{1}{{4\pi{\varepsilon_0}}} \cdot \dfrac{{{q_2}}}{{{{\left( {1.2 - x} \right)}^2}}}

Simplify the above equation,

\boxed{\dfrac{{{q_1}}}{{{{\left( x \right)}^2}}}=\dfrac{{{q_2}}}{{{{\left( {1.2 - x} \right)}^2}}}}                              …… (1)

Calculation:

Substitute 5 \times {10^{- 10}}{\text{ C}} for {q_1} and 80 \times {10^{ - 10}}{\text{ C}} for {q_2} in equation (1).

\begin{aligned}\frac{{5 \times {{10}^{- 10}}}}{{{{\left( x \right)}^2}}}&=\frac{{80\times {{10}^{- 10}}}}{{{{\left( {1.2 - x} \right)}^2}}}\\\frac{5}{{{x^2}}}&=\frac{{80}}{{{{\left( {1.2 - x} \right)}^2}}}\\5{\left( {1.2 - x}\right)^2}&=80{x^2}\\\end{aligned}

Simplify the above equation,

75{x^2} + 12x - 7.2 = 0

Solve the above equation,  

\begin{gathered}x=\frac{{-12 \pm \sqrt {{{12}^2} - 4\times75\times\left({-7.2} \right)}}}{{2 \times 75}}\\=\frac{{-12 \pm \sqrt {2304} }}{{150}}\\=\frac{{-12\pm48}}{{150}}\\\end{gathered}

Taking positive value,

\begin{aligned}x&=\frac{{ - 12 + 48}}{{150}}\\&=\frac{{36}}{{150}}\\&=0.24{\text{ m}}\\\end{aligned}

Distance of the point from the second particle will be,

\begin{aligned}\left({1.2-x}\right)&=1.2-0.24\\&=0.96{\text{ m}}\\\end{aligned}

Thus, the location of the point is at the distance of \boxed{0.24{\text{ m}}}from first particle and \boxed{0.96{\text{ m}}} from second particle.

Learn more:

1. Momentum change due to collision: brainly.com/question/9484203.  

2. Expansion of gas due to change in temperature: brainly.com/question/9979757.  

3. Conservation of momentum brainly.com/question/4033012.

Answer details:

Grade: Senior School  

Subject: Physics  

Chapter: Electric charges and fields

Keywords:

Two particles, separated by distance, point along line, zero electric field, coulomb law, charges, electric field, position vector, location of charge, 0.96m, 1m.

You might be interested in
Why is it wrong to leave our light on​
Dennis_Churaev [7]

Answer:

you will get huge electricity bills ............

8 0
2 years ago
A 0.40 kg mass hangs on a spring with a spring constant of 12 N/m. The system oscillated with a constant amplitude of 12 cm. Wha
Vaselesa [24]

Answer:

The maximum acceleration of the system is 359.970 centimeters per square second.

Explanation:

The motion of the mass-spring system is represented by the following formula:

x(t) = A\cdot \cos (\omega \cdot t + \phi)

Where:

x(t) - Position of the mass with respect to the equilibrium position, measured in centimeters.

A - Amplitude of the mass-spring system, measured in centimeters.

\omega - Angular frequency, measured in radians per second.

t - Time, measured in seconds.

\phi - Phase, measured in radians.

The acceleration experimented by the mass is obtained by deriving the position equation twice:

a (t) = -\omega^{2}\cdot A \cdot \cos (\omega\cdot t + \phi)

Where the maximum acceleration of the system is represented by \omega^{2}\cdot A.

The natural frequency of the mass-spring system is:

\omega = \sqrt{\frac{k}{m} }

Where:

k - Spring constant, measured in newtons per meter.

m - Mass, measured in kilograms.

If k = 12\,\frac{N}{m} and m = 0.40\,kg, the natural frequency is:

\omega = \sqrt{\frac{12\,\frac{N}{m} }{0.40\,kg} }

\omega \approx 5.477\,\frac{rad}{s}

Lastly, the maximum acceleration of the system is:

a_{max} = \left(5.477\,\frac{rad}{s})^{2}\cdot (12\,cm)

a_{max} = 359.970\,\frac{cm}{s^{2}}

The maximum acceleration of the system is 359.970 centimeters per square second.

7 0
3 years ago
Extinction of a species is most likely to occur as a result of __________.
sergejj [24]
Extinction of a species is most likely to occur as a result of "<span>environmental changes"

In short, Your Answer would be Option D

Hope this helps!</span>
8 0
2 years ago
Read 2 more answers
Which planet is least like earth? Mars,Venus, or Jupiter
Brums [2.3K]

Answer:

mars, reason why is because they both are diff from the size

Explanation:

7 0
2 years ago
Read 2 more answers
Raindrops hitting the side windows of a car in motion often leave diagonal streaks even if there is no wind. Why? Is the explana
labwork [276]

Answer:

because of the raindrop velocity relative of the car has a vertical and horizontal component  

Explanation:

  1. The car moves in a <em>horizontal direction </em>relative to the ground. The raindrops fall in the <em>vertical direction</em> relative to the ground.
  2. Their velocity relative to the moving car has  both vertical and horizontal components and this is the reason for the diagonal streaks on the side window.
  3. The diagonal streaks on the windshield  arise from a different reason.
  4. The drops  are pushed  off to  one side  of the  windshield  because  of air resistance.

6 0
2 years ago
Other questions:
  • A man can jump 1.5 m on earth. Calculate the approximate height
    15·1 answer
  • Two nuclei join to form a larger nucleus during which process
    6·2 answers
  • 2. This diagram represents a top-down view of an experiment on a table. The 250 g and 100 g masses are falling and are pulling t
    15·2 answers
  • Can charging by friction only occur in solids
    11·1 answer
  • For work to be accomplished we must have
    10·2 answers
  • An unknown number of identical light bulbs are connected to a 15 V battery in parallel. The current through the battery is 2 A.
    6·1 answer
  • Ella has a mass of 56 kg, and Tyrone has a mass of 68 kg. Ella is standing at the top of a skateboard ramp that is 1.5 meters ta
    12·2 answers
  • Identical spheres are dropped from a height of 100 m above the surfaces of Planet X and Planet Y. The speed of the spheres as a
    5·1 answer
  • A 15 n net force is used to move a 5kg box. What is the resulting acceleration?
    5·1 answer
  • A player hits a ball with a bat. The action is the force of the bat against the ball.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!