Answer:
35 m
0.56 m/s west
Explanation:
A) Total distance is the length of the path taken.
30 m + 5 m = 35 m
B) Velocity is displacement over time. Displacement is the difference between the final position and the initial position.
If west is -x, and east is +x, then:
Δx = -30 m + 5 m
Δx = -25 m
v = Δx / t
v = -25 m / 45 s
v = -0.56 m/s
v = 0.56 m/s west
mass of the bottle in each case is M = 0.250 kg
now as per given speeds we can use the formula of kinetic energy to find it
1) when speed is 2 m/s
kinetic energy is given as


2) when speed is 3 m/s
kinetic energy is given as


3) when speed is 4 m/s
kinetic energy is given as


4) when speed is 5 m/s
kinetic energy is given as


5) when speed is 6 m/s
kinetic energy is given as


Answer:
Option A. 180000 Kgm/s.
Explanation:
From the question given above, the following data were obtained:
For Train Car A:
Mass of train car A = 45000 Kg
Velocity of train car A = 4 m/s
Momentum of train car A =?
For Train Car B:
Mass of train car B = 45000 Kg
Velocity of train car B = 0 m/s
Momentum is simply defined as the product of mass and velocity. Mathematically, it can be expressed as:
Momentum = mass × velocity
With the above formula, the momentum of train car A before collision can be obtained as follow:
Mass of train car A = 45000 Kg
Velocity of train car A = 4 m/s
Momentum of train car A =?
Momentum = mass × velocity
Momentum = 45000 × 4
Momentum of train car A = 180000 Kgm/s
The answer would be A because
Answer:
I hope this will help you
Explanation:
When two neutral objects come into contact--especially in a dry environment--electrons can be knocked loose from one object and picked up by the other. The object that gains electrons becomes negatively charged, while the object that loses electrons becomes positively charged. Objects with like charges repel each other, while those with opposite charges attract each other. This phenomenon--in which objects acquire an electric charge and exert a force on one another--is what we call static electricity.