One of the concepts to be used to solve this problem is that of thermal efficiency, that is, that coefficient or dimensionless ratio calculated as the ratio of the energy produced and the energy supplied to the machine.
From the temperature the value is given as

Where,
T_L = Cold focus temperature
T_H = Hot spot temperature
Our values are given as,
T_L = 20\° C = (20+273) K = 293 K
T_H = 440\° C = (440+273) K = 713 K
Replacing we have,



Therefore the maximum possible efficiency the car can have is 58.9%
A. very small objects behave like like particles.
Answer:
Pi(3.14) radians or 180º degrees
Explanation:
First of all, we need to obtain the wavelength of a wave traveling to the speed of sound and 420 Hz of frequency.
The formula is:

where l = wavelength in meters
With current values:
l = 336 [m/s]/420[1/s] = 0.8 meters
Since a complete cycle (360º or 2pi radians) needs 0.8 meters to complete, 0.4 meters or 40 cm is just half of it, making a 180º degree phase or 3.14 radians.
The force applied by the man is 60 N
Explanation:
We can solve this problem by applying Newton's second law, which states that:
(1)
where
is the net force acting on the child+cart
m is the mass of the child+cart system
a is their acceleration
In this problem, we have:
m = 30.0 kg is the mass

And there are two forces acting on the child+cart system:
- The forward force of pushing, F
- The force resisting the cart motion, R = 15.0 N
Therefore we can write the net force as

where R is negative since its direction is opposite to the motion
So eq.(1) can be rewritten as

And solving for F,

Learn more about Newton's second law:
brainly.com/question/3820012
#LearnwithBrainly
Answer:
The answer is: letter c, in object recognition, the goal is recognizing the proximal stimulus.
Explanation:
Letter c is a "false" statement about object recognition because the goal is recognizing the distal stimulus and "not the proximal stimulus."
Distal stimulus refers to <em>an event or an object in the world that provides information to the proximal stimulus. </em>The proximal stimulus is a pattern of these events and objects that reaches to your senses. They can be registered in the person via<em> "sensory receptors." </em>
We need to recognize the distal stimulus and not the proximal stimulus. For example, when a lemon (distal stimulus) is being cut, it brings out a fragrance (proximal stimulus) that goes to the person's sense of smell. This gives the person a hint on where the smell is coming from and what it is. Then, the person recognizes that it is a lemon.