Newton's 2nd law of motion:
Force = (mass) x (acceleration)
Divide each side
by 'acceleration': Mass = (force) / (acceleration)
= (2,500 N) / (200 m/s²)
= 12.5 kg
Answer: perpendicular to it oscillations.
Explanation: A transverse wave is a wave whose oscillations is perpendicular to the direction of the wave.
By perpendicular, we mean that the wave is oscillating on the vertical axis (y) of a Cartesian plane and the vibration is along the horizontal axis (x) of the plane.
Examples of transverse waves includes wave in a string, water wave and light.
Let us take a wave in a string for example, you tie one end of a string to a fixed point and the other end is free with you holding it.
If you move the rope vertically ( that's up and down) you will notice a kind of wave traveling away from you ( horizontally) to the fixed point.
Since the oscillations is perpendicular to the direction of wave, it is a transverse wave
Explanation:
Light travels fastest through air
Answer:
85 N
Explanation:
Given that crate mass = 20kg
Distance = 6m
Time = 3 seconds
Coefficient of kinetic friction = 0.3
We begin by calculating for acceleration
Which was gotten as 1.33 m/s sq
SEE THE ATTACHEMENT FOR DETAILS
Answer:
a) equal 1, b) less than 1
Explanation:
a) the electric force is given by
Fe = q E
The charge of the electron and proton has the same value, that of the proton is positive and that of the electron is negative
Proton
Fp = qE
Electron
Fe = - q E
Fp / Fe = -1
If we do not take into account the sign the relationship is equal to one (1)
b) to calculate the force we use Newton's second law
F = ma
qE = m a
a = q E / m
The mass of the proton much greater than the mass of the electron
ap = q E / 
ae = - q E / 
ap / ae =
/
=
/1600
=1/1600
It is much smaller than 1