Answer:
there was a crash you can tell cause of the 2 cars the dog is curious on what happened, you can tell because the dog is looking at the cash
Answer:
ionized particles from the sun.
* interactions in radiation belts.
* the friction of the planet in the solar wind
q = +9 10⁵ C
Explanation:
Due to being made up of matter, the planet Earth has a series of positive and negative charges, in general these charges should be balanced and the net charge of the planet should be zero, but there are several phenomena that introduce unbalanced charges, for example:
* ionized particles from the sun.
* interactions in radiation belts.
* the friction of the planet in the solar wind
This creates that the planet has a net electrical load
We can roughly calculate the charge of the planet
E = k q / r²
q = E r² / k
let's calculate
q = 200 (6.37 10⁶)²/9 10⁹
q = +9 10⁵ C
Answer:
Orbital motion results when the object’s forward motion is balanced by a second object’s gravitational pull.
Explanation:
The gravitational force is responsible for the orbital motion of the planet, satellite, artificial satellite, and other heavenly bodies in outer space.
When an object is applied with a velocity that is equal to the velocity of the orbit at that location, the body continues to move forward. And, this motion is balanced by the gravitational pull of the second object.
The orbiting body experience a centripetal force that is equal to the gravitational force of the second object towards the body.
The velocity of the orbit is given by the relation,

Where
V - velocity of the orbit at a height h from the surface
R - Radius of the second object
G - Gravitational constant
h - height from the surface
The body will be in orbital motion when its kinetic motion is balanced by gravitational force.

Hence, the orbital motion results when the object’s forward motion is balanced by a second object’s gravitational pull.
Answer:
After 4 s of passing through the intersection, the train travels with 57.6 m/s
Solution:
As per the question:
Suppose the distance to the south of the crossing watching the east bound train be x = 70 m
Also, the east bound travels as a function of time and can be given as:
y(t) = 60t
Now,
To calculate the speed, z(t) of the train as it passes through the intersection:
Since, the road cross at right angles, thus by Pythagoras theorem:


Now, differentiate the above eqn w.r.t 't':


For t = 4 s:

NOTE: The strength of an electromagnet is directly proportional to not only the current but the number of windings. Doubling the number of windings doubles the strength of the magnet.