Speed = (acceleration) x (time)
Velocity = (speed) in (direction of the speed)
Speed = (-3 m/s²) x (5 s) = 15 m/s
Velocity =
(15 m/s) in the direction opposite to the direction you call positive.
Displacement = (distance between start-point and end-point)
in the direction from start-point to end-point.
Distance = (1/2) (acceleration) (time)²
Distance = (1/2) (3 m/s²) (5 s)²
= (1/2) (3 m/s²) (25 s²) = 37.5 meters
Displacement =
37.5 meters in the direction opposite to the direction you call positive.
Answer:
9.934 m/s²
Explanation:
Given:
Initial speed of the Bugatti Veyron Super Sport = 0 mi/h
Final speed of the Bugatti Veyron Super Sport = 60 mi/h
Now,
1 mi/h = 0.44704 m / s
thus,
60 mi/h = 0.44704 × 60 = 26.8224 m/s
Time = 2.70 m/s
Now,
The acceleration (a) is given as:
thus,
or
a = 9.934 m/s²
The cutoff frequency for magnesium is 8.93 x 10¹⁴ Hz.
<h3>What is cutoff frequency?</h3>
The work function is related to the frequency as
W0 = h x fo
where, fo = cutoff frequency and h is the Planck's constant
Given is the work function for magnesium is 3.70 eV.
fo = 3.7 x 1.6 x 10⁻¹⁹ / 6.626 x 10⁻³⁴
fo = 8.93 x 10¹⁴ Hz.
Thus, the cut off frequency is 8.93 x 10¹⁴ Hz.
Learn more about cutoff frequency.
brainly.com/question/14378802
#SPJ1
Answer:
The velocity of the Mr. miles is 17.14 m/s.
Explanation:
It is given that,
Mr. Miles zips down a water-slide starting at 15 m vertical distance up the scaffolding, h = 15 m
We need to find the velocity of the Mr. Miles at the bottom of the slide. It is a case of conservation of energy which states that the total energy of the system remains conserved. Let v is the velocity of the Mr. miles. So,

g is the acceleration due to gravity

v = 17.14 m/s
So, the velocity of the Mr. miles is 17.14 m/s. Hence, this is the required solution.