Answer:
Current (I) = 3 x 10^-2 A
Explanation:
As we know, 
By putting up the values needed from the data...
Current (I) = 2 x 3.14 x (3.0 x 10^-6) (2.0 x 10^-3) / 4 x 3.14 x 10^-7 = 3 x 10^-2 A
Answer:
the intensity of the sun on the other planet is a hundredth of that of the intensity of the sun on earth.
That is,
Intensity of sun on the other planet, Iₒ = (intensity of the sun on earth, Iₑ)/100
Explanation:
Let the intensity of light be represented by I
Let the distance of the star be d
I ∝ (1/d²)
I = k/d²
For the earth,
Iₑ = k/dₑ²
k = Iₑdₑ²
For the other planet, let intensity be Iₒ and distance be dₒ
Iₒ = k/dₒ²
But dₒ = 10dₑ
Iₒ = k/(10dₑ)²
Iₒ = k/100dₑ²
But k = Iₑdₑ²
Iₒ = Iₑdₑ²/100dₑ² = Iₑ/100
Iₒ = Iₑ/100
Meaning the intensity of the sun on the other planet is a hundredth of that of the intensity on earth.
Answer:
Explanation:
Let m be mass of each sphere and θ be angle, string makes with vertex in equilibrium.
Let T be tension in the hanging string
T cosθ = mg ( for balancing in vertical direction )
for balancing in horizontal direction
Tsinθ = F ( F is force of repulsion between two charges sphere)
Dividing the two equations
Tanθ = F / mg
tan17 = F / (7.1 x 10⁻³ x 9.8)
F = 21.27 x 10⁻³ N
if q be charge on each sphere , force of repulsion between the two
F = k q x q / r² ( r is distance between two sphere , r = 2 x .7 x sin17 = .41 m )
21.27 x 10⁻³ = (9 X 10⁹ x q²) / .41²
q² = .3973 x 10⁻¹²
q = .63 x 10⁻⁶ C
no of electrons required = q / charge on a single electron
= .63 x 10⁻⁶ / 1.6 x 10⁻¹⁹
= .39375 x 10¹³
3.9375 x 10¹² .
When your Contrasting multiple objects, your looking for any differences that may or may not be their. Think Compare and Contrast if that helps, The answer to this is A