Answer:
The shortest braking distance is 35.8 m
Explanation:
To solve this problem we must use Newton's second law applied to the boxes, on the vertical axis we have the norm up and the weight vertically down
On the horizontal axis we fear the force of friction (fr) that opposes the movement and acceleration of the train, write the equation for each axis
Y axis
N- W = 0
N = W = mg
X axis
-Fr = m a
-μ N = m a
-μ mg = ma
a = μ g
a = - 0.32 9.8
a = - 3.14 m/s²
We calculate the distance using the kinematics equations
Vf² = Vo² + 2 a x
x = (Vf² - Vo²) / 2 a
When the train stops the speed is zero (Vf = 0)
Vo = 54 km/h (1000m/1km) (1 h/3600s)= 15 m/s
x = ( 0 - 15²) / 2 (-3.14)
x= 35.8 m
The shortest braking distance is 35.8 m
Answer:Hydrostatic
Explanation: I think this is the answer, not sure. Sorry
Answer:
¹/₃₈₇ second
Explanation:
<em>The period of a wave is the reciprocal of its frequency.</em>
So, simply, the frequency is ¹/₃₈₇ second(s), as that is the reciprocal of the frequency, 387 Hz.
I'm not sure I completely understand the expression you want evaluated.
It looks like a fraction with the same exact thing in both the numerator and the denominator. A fraction like that always boils down to ' 1 '.
Answer:
C) must be such as to follow the magnetic field lines.
Explanation:
Ampere's circuital law helps us to calculate magnetic field due to a current carrying conductor. Magnetic field due to a current forms closed loop around the current . If a net current of value I creates a magnetic field B around it , the line integral of magnetic field around a closed path becomes equal to μ₀ times the net current . It is Ampere's circuital law . There may be more than one current passing through the area enclosed by closed curve . In that case we will take net current by adding or subtracting them according to their direction.
It is expressed as follows
∫ B.dl = μ₀ I . Here integration is carried over closed path . It may not be circular in shape. The limit of this integration must follow magnetic field lines.
the term ∫ B.dl is called line integral of magnetic field.