Initial volume of the gas (V1) = 10 inches^3
Initial pressure (P1) = 5 psi
Final pressure after compression of the gas (P1) = 10 psi
Let us assume the final volume of the gas (V2) = x
According to Boyle's Gas law, the pressure and volume of a gas remains constant under ideal condition. Then
P1V1= P2V2
5 * 10 = 10 * x
50 = 10x
x = 50/10
= 5 cubic inches
So the volume of the gas after it was compressed was 5 cubic inches. I hope the procedure is clear enough for you to understand.
Answer:
Approximately , assuming that .
Explanation:
Let and denote the mass and acceleration of Spiderman, respectively.
There are two forces on Spiderman:
- Downward gravitational attraction from the earth: .
- Upward tension force from the strand of web .
The directions of these two forces are exactly opposite of one another. Besides, because Spiderman is accelerating upwards, the magnitude of (which points upwards) should be greater than that of (which points downwards towards the ground.)
Subtract the smaller force from the larger one to find the net force on Spiderman:
.
On the other hand, apply Newton's Second Law of motion to find the value of the net force on Spiderman:
.
Combine these two equations to get:
.
Therefore:
.
By Newton's Third Law of motion, Spiderman would exert a force of the same size on the strand of web. Hence, the size of the force in the strand of the web should be approximately (downwards.)
Answer:
12.17 m/s²
Explanation:
The formula of period of a simple pendulum is given as,
T = 2π√(L/g)........................ Equation 1
Where T = period of the simple pendulum, L = length of the simple pendulum, g = acceleration due to gravity of the planet. π = pie
making g the subject of the equation,
g = 4π²L/T²................... Equation 2
Given: T = 1.8 s, l = 1.00 m
Constant: π = 3.14
Substitute into equation 2
g = (4×3.14²×1)/1.8²
g = 12.17 m/s²
Hence the acceleration due to gravity of the planet = 12.17 m/s²
The independent variable is how much weight you add to the boat.
The dependent variable is: Did it or did it not sink yet ?
Answer:
0.8 x 10^-9 kg
Explanation:
Given,
Distance ( R ) = 10 m
Force ( F ) = 3.2 x 10^-9 N
Mass ( m1 ) = 40 kg
To find : Mass ( m2 ) = ?
Formula : -
F = m1.m2 / R^2
m2 = FR^2 / m1
= 3.2 x 10^-9 x 10 / 40
= 3.2 x 10^-9 / 4
= ( 3.2 / 4 ) x 10^-9
m2 = 0.8 x 10^-9 kg