Answer:
The net friction force is 8.01 N
Explanation:
Net friction force = mass of hockey puck × acceleration
From the equations of motion
v^2 = u^2 + 2as
v = 40 m/s
u = 0 m/s (puck was initially at rest)
s = 30 m
40^2 = 0^2 + 2×a×30
60a = 1600
a = 1600/60 = 26.7 m/s^2
The acceleration of the puck is 26.7 m/s^2
Net friction force = 0.3 × 26.7 = 8.01 N
An equation relating the length that you measure l to the ship's proper length l0 is
l =l0/y. This is further explained below.
<h3>What is an equation relating the length that you measure l to the ship's proper length l0?</h3>
Generally, Any object's length in a moving frame will look shortened or contracted when seen in that direction. The Lorentz transformation may be used to determine the amount of contraction.
In conclusion, To use the Lorentz Lorentz transformation, the length Lo-x2 - may be determined if it is measured in the moving reference frame. Hence the Resultant l = l0/y.
Read more about Lorentz transformation
brainly.com/question/16284701
#SPJ1
By looking at how wiggily the bar is lol
Answer:
Explanation:
a ) The volume of blood flowing per second throughout the vessel is constant .
a₁ v₁ = a₂ v₂
a₁ and a₂ are cross sectional area at two places of vessel and v₁ and v₂ are velocity of blood at these places .
2A x v₁ = A x .40
v₁ = .20 m /s
b )
Let normal pressure be P₁ when cross sectional area is 2A and at cross sectional area A , pressure is P₂
Applying Bernoulli's theorem
P₁ + 1/2 ρv₁² = P₂ + 1/2 ρv₂²
P₁ - P₂ = 1/2 ρ(v₂² - v₁² )
= .5 x 1060 ( .4² - .2² )
= 63.6 Pa .
Answer:
the acceleration due to gravity g at the surface is proportional to the planet radius R (g ∝ R)
Explanation:
according to newton's law of universal gravitation ( we will neglect relativistic effects)
F= G*m*M/d² , G= constant , M= planet mass , m= mass of an object , d=distance between the object and the centre of mass of the planet
if we assume that the planet has a spherical shape, the object mass at the surface is at a distance d=R (radius) from the centre of mass and the planet volume is V=4/3πR³ ,
since M= ρ* V = ρ* 4/3πR³ , ρ= density
F = G*m*M/R² = G*m*ρ* 4/3πR³/R²= G*ρ* 4/3πR
from Newton's second law
F= m*g = G*ρ*m* 4/3πR
thus
g = G*ρ* 4/3π*R = (4/3π*G*ρ)*R
g ∝ R