Oak tree, because it’s the primary producer
To answer the question above, let us a basis of the 1000 mL or 1 L.
volume = (0.9928 g/mL)(1000mL) = 992.8 g
Then, determine the mass of the alcohol by multiplying the total mass by the decimal equivalent of 5%.
mass of alcohol = 0.05(992.8 g) = 49.64 g
Then, determine the number of moles of ethyl alcohol by dividing the mass of alcohol by the molar mass (46 g/mol).
n = 49.64 g/ (46 g/mol) = 1.08 mol
Then, divide the number of moles by the volume (our basis is 1 L)
molarity = 1.08 mol/ 1 L = 1.08 M
Answer:
B = mass, height
Gravitational potential energy is a function of the mass ans the height of an object.
Explanation:
The formula for gravitational potential energy is
GPE = mgh
m = mass in kilogram
g = acceleration due to gravity
h = height in meter above the ground
Formula:
GP.E = mgh
Consider the following example:
A crane lifts a 75kg mass a height of 8 m. Calculate the gravitational potential energy gained by the mass:
Formula:
GP.E = mgh
Now we will put the values in formula.
g = 9.8 m/s²
GP.E = 75 Kg × 9.8 m/s²× 8 m
GP.E = 5880 Kg.m²/s²
Kg.m²/s² = j
GP.E = 5880 j
First, we convert the moles of each substance into the concentration using the volume of the reactor.
[SO₃] = 0.425/1.5 = 0.283 M
[SO₂] = 0.208 / 1.5 = 0.139 M
[O₂] = 0.208/1.5 = 0.139 M
The equilibrium constant is calculated by:
Kc = [SO₃]² / [O₂][SO₂]²
Kc = (0.283)²/(0.139)(0.139)²
Kc = 29.8 = 2.98 x 10¹
The answer is C
In hot water the molecules move faster versus In cold water they move slower (hope that helps)