If you only want to balance nuclear reactions, then you should know that number of nucleons are conserved before and after nuclear reaction. Also, charge is conserved as well.
Other things which are conserved in a nuclear reaction are:
Conservation of:
1. Parity
2. Spin
3. angular momentum(vector sum of intrinsic spin and orbital angular momentum)
4. linear momentum
5. Isotopic spin
6. Energy
<span>Many life forms consist of a single cell. As well as simple bacteria, there are more complex organisms, known as protoctists. Unlike bacteria, they have complex internal structures, such as nuclei containing organized strands of genetic material called chromosomes. Most are single-celled, but some form colonies, with each cell usually remaining self-sufficient.</span>
Answer:
2

Explanation:
Half-life


Concentration
![{[A]_0}_A=1.2\ \text{M}](https://tex.z-dn.net/?f=%7B%5BA%5D_0%7D_A%3D1.2%5C%20%5Ctext%7BM%7D)
![{[A]_0}_B=0.6\ \text{M}](https://tex.z-dn.net/?f=%7B%5BA%5D_0%7D_B%3D0.6%5C%20%5Ctext%7BM%7D)
We have the relation
![t_{1/2}\propto \dfrac{1}{[A]_0^{n-1}}](https://tex.z-dn.net/?f=t_%7B1%2F2%7D%5Cpropto%20%5Cdfrac%7B1%7D%7B%5BA%5D_0%5E%7Bn-1%7D%7D)
So
![\dfrac{{t_{1/2}}_A}{{t_{1/2}}_B}=\left(\dfrac{{[A]_0}_B}{{[A]_0}_A}\right)^{n-1}\\\Rightarrow \dfrac{2}{4}=\left(\dfrac{0.6}{1.2}\right)^{n-1}\\\Rightarrow \dfrac{1}{2}=\left(\dfrac{1}{2}\right)^{n-1}](https://tex.z-dn.net/?f=%5Cdfrac%7B%7Bt_%7B1%2F2%7D%7D_A%7D%7B%7Bt_%7B1%2F2%7D%7D_B%7D%3D%5Cleft%28%5Cdfrac%7B%7B%5BA%5D_0%7D_B%7D%7B%7B%5BA%5D_0%7D_A%7D%5Cright%29%5E%7Bn-1%7D%5C%5C%5CRightarrow%20%5Cdfrac%7B2%7D%7B4%7D%3D%5Cleft%28%5Cdfrac%7B0.6%7D%7B1.2%7D%5Cright%29%5E%7Bn-1%7D%5C%5C%5CRightarrow%20%5Cdfrac%7B1%7D%7B2%7D%3D%5Cleft%28%5Cdfrac%7B1%7D%7B2%7D%5Cright%29%5E%7Bn-1%7D)
Comparing the exponents we get

The order of the reaction is 2.
![t_{1/2}=\dfrac{1}{k[A]_0^{n-1}}\\\Rightarrow k=\dfrac{1}{t_{1/2}[A]_0^{n-1}}\\\Rightarrow k=\dfrac{1}{2\times 1.2^{2-1}}\\\Rightarrow k=0.4167\ \text{M}^{-1}\text{min}^{-1}](https://tex.z-dn.net/?f=t_%7B1%2F2%7D%3D%5Cdfrac%7B1%7D%7Bk%5BA%5D_0%5E%7Bn-1%7D%7D%5C%5C%5CRightarrow%20k%3D%5Cdfrac%7B1%7D%7Bt_%7B1%2F2%7D%5BA%5D_0%5E%7Bn-1%7D%7D%5C%5C%5CRightarrow%20k%3D%5Cdfrac%7B1%7D%7B2%5Ctimes%201.2%5E%7B2-1%7D%7D%5C%5C%5CRightarrow%20k%3D0.4167%5C%20%5Ctext%7BM%7D%5E%7B-1%7D%5Ctext%7Bmin%7D%5E%7B-1%7D)
The rate constant is 
Fe + O2 → Fe2O3
After balancing the eq.
4Fe + 3O2 → 2Fe2O3
Hope this will help u mate :)
The answer a way of explaining a complex concept.