1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
skelet666 [1.2K]
2 years ago
14

A 15 kg dog jumps out a stationary sled which has a mass of 40 kg. If

Physics
1 answer:
zzz [600]2 years ago
5 0
Velocity of the sled is 3.2 m/s
You might be interested in
Water enters a student's house 10.0 m above the ground through a pipe with a cross section area of 1.00 x 10-4m2 at ground. Insi
dezoksy [38]

Answer:

(a). V₁ = 10m/s (velocity inside the house), V₂ = 5m/s (velocity at ground level)

(b). P₂ = 236500 Pa

Explanation:

This is quite straight-forward so let us begin by defining the terms given.

Given that;

The cross-section area inside the student's house A₁ = 0.50 0.50 x 10-4m2.

Let us make the velocity of water inside the house be V₁

such that the Volume of water entering the per second is = A₁V₁

Therefore, in 90sec:

45 L =  90 A₁V₁

V₁ = 45 * 10⁻³m³ / 90*0.5*10⁻⁴

V₁ = 10m/s            (velocity of water inside the house)

From the continuity equation we have that;

A₁V₁ = A₂V₂

0.5*10⁻⁴ * 10 = 1*10⁻⁴ V₂

V₂ = 5m/s               (velocity at ground level)

(b). We are told to calculate the water pressure in the pipeline at the ground level.

Using Bernoulli's equation;

P₁ + pgh₁ + 1/2PV₁²  (inside)      =       P₂ + pgh₂ + 1/2PV₂²   (ground level)

1.01*10⁵ + 1000*9.8*10 + 1/2*1000*(10)² = P₂ + 0 + 1/2*1000*(5)²

P₂ (pressure) = 1.01*10⁵Pa

Therefore we have;

101000 + 98000 + 50000 = P₂ + 12500

P₂ = 236500 Pa

cheers I hope this helped !!

3 0
3 years ago
Need an answer pls!!!<br><br><br><br><br><br> will give brainliest
solmaris [256]

Answer:

i think your answer is C

Explanation:

8 0
3 years ago
Read 2 more answers
IS
jarptica [38.1K]

Answer:

5.03

Explanation:

trust me

7 0
3 years ago
How much heat is lost by 2.0 grams of water if the temperature drops from 31 °C to 29 °C? The specific heat of water is 4.184 J/
Elanso [62]

Given :

Mass of water, m = 2 grams.

The temperature of water drops from 31 °C to 29 °C .

The specific heat of water is 4.184 J/(g • °C).

To Find :

Amount of heat lost in this process.

Solution :

We know, heat lost is given by :

Heat\ lost,H = ms( T_f - T_i)\\\\H = 2\times 4.184 \times ( 31 - 29 )\ J\\\\H = 16.736\ J

Therefore, amount of heat lost in this process is 16.736 J.

4 0
3 years ago
A 1400-kg car traveling east at 25m/s collides with a 1800-kg car traveling at a speed of 20m/s in a direction that makes angle
julia-pushkina [17]
M1*V1 + M2*V2 = M1*V + M2*V.
1400*25 + 1800*20[180+40]=1400*V+1800*V.
Divide both sides by 100:
14*25 + 18*20[220o] = 14V + 18V.
350 + 360[220o] = 32V.
350 - 276-231i = 32V.
74 - 231i = 32V.
242.6[-72.2o] = 32V.
V = 7.6m/s[-72.2o]=7.6m/s[72o] S. of E.
7 0
3 years ago
Other questions:
  • A student pulls a block over a rough surface with a constant force FP that is at an angle θ above the horizontal, as shown above
    11·2 answers
  • What parts are found in an electric generator
    14·2 answers
  • A ball falling through the air has what?
    7·1 answer
  • Olivia wants to find out whether a substance will fluoresce. She says she should put it in a microwave oven. Do you agree with h
    12·2 answers
  • Two spherical objects are separated by a distance that is 9.00 X 10m The objects are initially electrically neutral and are very
    8·1 answer
  • A crate resting on a rough horizontal floor is to be moved horizontally. The coefficient of static friction is 0.36. To start th
    12·1 answer
  • The light from one end of the Milky Way galaxy takes about 150,000 years to travel to the other end. Which of these statements i
    10·1 answer
  • Which of the following animals could detect sound at a frequency of 67,000 Hz?
    10·2 answers
  • How can we protect space shuttles or astronauts from space radiation in the absence of the atmospheric layer?
    6·1 answer
  • Find the cross-sectional area.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!