Answer: the contents of this container weighs 4905 kg.m/s²
Explanation:
Given that;
volume of a container V = 0.5 m³
we know that standard gravitational acceleration g = 9.81 m/s²
specific volume of liquid filled in the container v = 0.001 m³/kg
now we express the equation for weight of the container.
W = mg
W = (pV)g
W = Vg / ν
so we substitute
W = (0.5 m³)(9.81 m/s ) / 0.001 m³/kg
W = 4.905 / 0.001
W = 4905 kg.m/s²
Therefore, the contents of this container weighs 4905 kg.m/s²
Answer: False
Explanation: In order to explain this problem we have to use the Faraday law, which say
dФm/dt=-ε it means that the variation of the magnetic field flux with time is equal to the emf ( electromotive force). In our case the magnetic flux is constant then there is not a emf induced in a wire closed loop.
y = 75.9 m
Explanation:
y = -(1/2)gt^2 + v0yt + y0
If we put the origin of our coordinate system at the point where a body is launched, then y0 = 0.
y = -(1/2)(9.8 m/s^2)(3 s)^2 + (40 m/s)(3 s)
= -44.1 m + 120 m
= 75.9
Answer:

between the plates.
Explanation:
The equation for change of voltage between two points separated a distance d inside parallel conducting plates (<em>which have between them constant electric field</em>) is:

So to calculate our electric field strength we use the fact that the potential 8.8 cm from the zero volt plate is 475 V:

And we use the fact that the plates are 9.2cm apart to calculate the voltage between them:
