Answer:
D. All of the above
Explanation:
E = MC² is a common equation in physics.
E is energy
M is mass
C is the speed of light
The law was stated by Albert Einstein.
- From this law, it was shown that energy is released when matter is destroyed.
- Mass and energy are equivalent as seen in nuclear reactions where mass is converted to energy.
- Mass and energy is usually conserved in any process and this is a subtle modification of the law of conservation of matter and energy.
- Most of these postulates apply to nuclear reactions which generally do not follow some precepts of chemical laws.
Answer:
1. It will most likely die
2. The ostrilope with level 10 armor will most likely reproduce more offspring because it is adapted to the environment.
Explanation:
b. What useful functions do oxidation numbers serve?
It is used to show oxidation and reduction (loss and gain of electrons)
b. How many molecules are in 1 mole of molecules?
1 mole = 6.022 * 10^23 molecules
c. What is the name given to the number of molecules in 1 mole?
Avogadro's Number of molecules
21. a. What is the molar mass of an element?
This is the mass of an element divided by the number of moles.
Molar mass = Mass / Number of moles
b. Write the molar mass rounded to two decimal places of carbon, neon, iron and uranium.
amu = Atomic Mass Unit
Carbon = 12.01 amu
Neon = 20.18 amu
Iron = 55.85 amu
Uranium = 238.03 amu
Answer:
see note under explanation
Explanation:
When describing system and surroundings the system is typically defined as the 'object of interest' being studied and surroundings 'everything else'. In thermodynamics heat flow is typically defined as endothermic or exothermic. However, one should realize that the terms endothermic and exothermic are in reference to the 'system' or object of interest being studied. For example if heat is transferred from a warm object to a cooler object it is imperative that the system be defined 1st. So, with that, assume the system is a warm metal cylinder being added into cooler water. When describing heat flow then the process is exothermic with respect to the metal cylinder (the system) but endothermic to the water and surroundings (everything else).
It is the electron sharing.
electronegative element + electronegative element
exemple :
O₂ , H₂
hope this helps!