Answer :
The equilibrium concentration of CO is, 0.016 M
The equilibrium concentration of Cl₂ is, 0.034 M
The equilibrium concentration of COCl₂ is, 0.139 M
Explanation :
The given chemical reaction is:

Initial conc. 0.1550 0.173 0
At eqm. (0.1550-x) (0.173-x) x
As we are given:

The expression for equilibrium constant is:
![K_c=\frac{[COCl_2]}{[CO][Cl_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BCOCl_2%5D%7D%7B%5BCO%5D%5BCl_2%5D%7D)
Now put all the given values in this expression, we get:

x = 0.139 and x = 0.193
We are neglecting value of x = 0.193 because equilibrium concentration can not be more than initial concentration.
Thus, we are taking value of x = 0.139
The equilibrium concentration of CO = (0.1550-x) = (0.1550-0.139) = 0.016 M
The equilibrium concentration of Cl₂ = (0.173-x) = (0.173-0.139) = 0.034 M
The equilibrium concentration of COCl₂ = x = 0.139 M
The mass of melted gold to release the energy would be 3, 688. 8 Kg
<h3>How to determine the mass</h3>
The formula for quantity of energy is given thus;
Q = n × HF
Where n represents number of moles
HF represents heat of fusion
To find the number of moles, we have
235.0 = n × 12.550
number of moles =
= 18. 725 moles
Note that molar mass of Gold is 197g/ mol
Let's note that;
Number of moles = mass/ molar mass
Mass = number of moles × molar mass
Mass = 18. 725 × 197
Mass = 3, 688. 8 Kg
Thus, the mass of melted gold to release the energy would be 3, 688. 8 Kg
Learn more about molar heat of fusion here:
brainly.com/question/15634085
#SPJ1
Answer:
a. atoms are indivisible. ... atoms can not be destroyed in chemical reactions.
Explanation:
Hope this helped :D
Answer:
A. A scientist investigates a mouse's growth in nature by watching the animal.
A field study is a raw collection of data, typically in the natural habit of the organism; hence why an experiment taken in a lab isn't a field study.