Answer:
a)11.25 J
b)Number of revolution = 1
Explanation:
Given that
Radius ,r= 0.8 m
m= 0.3 kg
Initial speed ,u= 10 m/s
final speed ,v= 5 m/s
a)
Initial energy


KEi= 15 J
Final kinetic energy


KEf=3.75 J
The energy transformed from mechanical to internal = 15 - 3.75 J = 11.25 J
b)
The minimum value to complete the circular arc

Now by putting the values

V= 2.82 m/s
So kinetic energy KE


KE=1.19 J
ΔKE= KEi - KE
ΔKE= 15- 1.19 J
ΔKE=13.80 J
The minimum energy required to complete 2 revolutions = 2 x 11.25 J
= 22.5 J
Here 22.5 J is greater than 13.8 J.So the particle will complete only one revolution.
Number of revolution = 1
Answer:
kubsurti dekh ne me use hota hai
lol
XD....
Answer:
v = 5.7554 m/s
Explanation:
First of all we need to know if the angle of the vine is measured in the horizontal or vertical.
To do this easier, let's assume the angle is measured with the horizontal. In this case, the innitial height of the monkey will be:
h₀ = h sinα
h₀ = 5.32 sin43° = 3.6282 m
As the monkey is dropping from the innitial point which is the suspension point, is also dropping from 5.32. Then the actual height of the monkey will be:
Δh = 5.32 - 3.63 = 1.69 m
In order to calculate the speed of the monkey we need to understand that the monkey has a potential energy. This energy, because of the gravity, is converted in kinetic energy, and the value will be the same. Therefore we can say that:
Ep = Ek
From here, we can calculate the speed of the monkey.
Ep = mgΔH
Ek = 1/2 mv²
The potential energy is:
Ep = 16.9 * 9.8 * 1.69 = 279.9
Now with the kinetic energy:
1/2 * (16.9) * v² = 279.9
v² = (279.9) * 2 / 16.9
v² = 33.12
v = √33.12
<h2>
v = 5.7554 m/s</h2>
Hope this helps
Tbh i don’t really know I’m just waiting for y’all to tell me the answer