The wording of the choices is really unclear. With two resistors in parallel,
here's the situation:
-- The voltage across each resistor is the same as the voltage across
the other one. If the parallel combination is connected to the battery,
then the voltage across each resistor is the full battery voltage.
-- The current through each resistor is (V) / (the resistance of that resistor).
That's the same current as would flow through that resistor if the other one
were not there.
-- As long as the battery or other power supply holds out, neither of these
quantities changes.
Can you match this situation to one of the choices listed ?
It looks to me as if choice 'C' is the one that's most likely
trying to say this.
The force is reasonable for making fusion possible in the Sun is heat energy.
<h3>What is nuclear fission and fusion?</h3>
When the slow moving neutrons are bombarded with the heavy radioactive nuclei, the product is the more number of neutrons are produced with the large amount of energy. This multiplying process is called nuclear fusion.
The amount of energy produced in such a reaction can be calculated using the equivalence of mass and energy relationship.
E = mc²
The same happens in nuclear fusion where large amount of energy is needed to make more heavy nuclei.
Thus, fusion requires heat energy to continue the reaction.
Learn more about nuclear fusion and fission.
brainly.com/question/22991718
#SPJ1
Explanation:
It is known that electric field is responsible for creating electric potential. As a result, it depends only on the electric field and not on the magnitude of charge.
So, when a charge is increased by a factor of 2 then electric potential will remain the same. Since, expression to calculate the electric potential is as follows.
U = qV
Since, the electric potential is directly proportional to the charge. Hence, when 0.2
tends to replaced by 0.4
then charge is increased by a factor of 2. Hence, the electric potential energy is doubled.
Thus, we can conclude that if that charge is replaced by a +0.4 µC charge then electric potential stays the same, but the electric potential energy doubles.
Answer:
3120J
Explanation:
Given parameters:
C = Specific heat capacity = 0.8J/g°C
Initial temperature = 20°C
Mass given = 5g
Final temperature = 800°C
Unknown:
Energy given to the mass = ?
Solution:
To find the energy given to the mass, let us simply use the expression below:
H = m c ΔT
H is the unknown, the energy supplied
m is the mass of the substance
c is the specific heat capacity
ΔT is the change in temperature
Input the variables;
H = 5 x 0.8 x (800 - 20) = 3120J