Answer:
With an understanding of the ideal gas laws, it is now possible to apply these principles to chemical stoichiometry problems. For example, zinc metal and hydrochloric acid (hydrogen chloride dissolved in water) react to form zinc (II) chloride and hydrogen gas according to the equation shown below:
2 HCl (aq) + Zn (s) → ZnCl2 (aq) + H2 (g)
Explanation:
Answer: definite proportions.
Explanation:
1) The definite proportions law states that compounds will always have the same kind of atoms (elements) in the same mass proportion (ratios).
2) For example, a molecule of water will alwys have the same mass ratio of hydrogen atoms to oxygen atoms. That is what permits to obtain the chemical formula of the water molecule as H₂O.
The mass of the two hydrogen atoms will be in a fixed ratio respect to the mass of the oxygen atoms.
Then, if you have one reactant in less proportion than the other, respect to the ratio stated by the chemical formula of water, the former will react completely (it is the limiting reactant) with the corresponding (proportional) mass of the later. Then there will be an excess of the later reactant which will not react (will remain unchanged).
The reactants can only react in the proportion defined by the chemical formulas of the final products.
4P + 502 -> P4O10 this is the answer
Answer:
58.0 g of MgO
Explanation:
in a perfect world, 70 g, however we don't live in a perfect world
The equation of reaction
2Mg + O₂ --> 2MgO
first find which element is limiting:
35 g x 1 mol/24.3 g of Mg x 2 mol of MgO/ 2 mole of Mg = 1.44 moles of MgO
35 g x 1 mol/32g of Mg x 2 mol of MgO/ 1 mole of O₂ = 2.1875 moles of MgO
This means Mg is the limiting factor, so you will be using this moles to find grams of MgO
1.44 mols of MgO x 40.3 g of MgO/ 1 mol = 58.0 g of MgO