Answer:
0.7μM = 0.6 μM = 0.5 μM > 0.4 μM > 0.3 μM > 0.2 μM
Explanation:
An enzyme solution is saturated when all the active sites of the enzyme molecule are full. When an enzyme solution is saturated, the reaction is occurring at the maximum rate.
From the given information, an enzyme concentration of 1.0 μM Y can convert a maximum of 0.5 μM AB to the products A and B per second means that a 1.0 M Y solution is saturated when an AB concentration of 0.5 M or greater is present.
The addition of more substrate to a solution that contains the enzyme required for its catalysis will generally increase the rate of the reaction. However, if the enzyme is saturated with substrate, the addition of more substrate will have no effect on the rate of reaction.
<em>Therefore the reaction rates at substrate concentrations of 0.7μM, 0.6 μM, and 0.5 μM are equal. But the reaction rate at substrate concentrations of 0.2 μM is lower than at 0.3 μM, 0.3 μM is lower than 0.4 μM and 0.4 μM is lower than 0.5 μM, 0.6 μM and 0.7 μM.</em>
Answer:
Francium (Fr)
Explanation:
Looking at the periodic table, Francium has 7 energy levels as it is in the 7th Period and is in the 1st Group (meaning it has one electron in the outermost shell) which suggests that it has one valence electron.
<em>Hope this helps and be sure to have a wonderful time ahead at Brainly! :D</em>
Any substance that is not a mixture is a pure substance. When colored watercolors are applied to paper, sometimes the colors in the ink separate. This technique is called chromatography
Hi yes bestie just make sure you eat enough so that you can actually build the mussel
Two changes would make this reaction reactant-favored
C. Increasing the temperature
D. Reducing the pressure
<h3>Further explanation</h3>
Given
Reaction
2H₂ + O₂ ⇒ 2H₂0 + energy
Required
Two changes would make this reaction reactant-favored
Solution
The formation of H₂O is an exothermic reaction (releases heat)
If the system temperature is raised, then the equilibrium reaction will reduce the temperature by shifting the reaction in the direction that requires heat (endotherms). Conversely, if the temperature is lowered, then the equilibrium shifts to a reaction that releases heat (exothermic)
While on the change in pressure, then the addition of pressure, the reaction will shift towards a smaller reaction coefficient
in the above reaction: the number of coefficients on the left is 3 (2 + 1) while the right is 2
As the temperature rises, the equilibrium will shift towards the endothermic reaction, so the reaction shifts to the left towards H₂ + O₂( reactant-favored)
And reducing the pressure, then the reaction shifts to the left H₂ + O₂( reactant-favored)⇒the number of coefficients is greater