The correct answer is B.
Strong acids completely dissociates to give hydrogen ions . Weak bases can only partially dissociate to give hydroxide ions .
Therefore when equal amounts of acid and base are mixed, while Acid is completely dissociated and gives out hydrogen ions but base only gives out a fraction of hydroxide ions.
Therefore number of hydrogen ions in the solution will be higher than hydroxide ions, resulting in an acidic pH. Therefore pH <7
Answer:
Volume required from standard solution = 4675 mL
Explanation:
Given data:
Final volume = 75.0 mL
Final molarity = 130 M
Molarity of standard solution = 2.000 M
Volume required from standard solution = ?
Solution:
We use the formula,
C₁V₁ = C₂V₂
here,
C₁ = Molarity of standard solution
V₁ = Volume required from standard solution
C₂ = Final molarity
V₂ = Final volume
Now we will put the values in formula,
C₁V₁ = C₂V₂
2.000 M × V₁ = 130 M × 75.0 mL
V₁ = 9750 M. mL / 2.000 M
V₁ = 4675 mL
The question is incomplete. Complete question is attached below:
...........................................................................................................................
Answer:
Given: conc. of HBr = 1.4 M
Volume of HBr = 15.4 mL
Volume of KOH = 22.10 mL
We know that, M1V1 = M2V2
(HBr) (KOH)
Therefore, M2 = M1V1/V2
= 1.4 X 15.4/22.10
= 0.9756 M
Concentration of KOH is 0.9756 M.
Answer:
Pyruvic acid: conjugate base
Lactic acid: conjugate base
Explanation:
The ratio of conjugate base to conjugate acid can be found using the Henderson-Hasselbalch equation when the pH and pKa are known.
pH = pKa + log([A⁻]/[HA])
The equation can be rearranged to solve for the ratio:
pH - pKa = log([A⁻]/[HA])
[A⁻]/[HA] = 10^(pH-pKa)
Now we can calculate the ratio for the pyruvic acid:
[A⁻]/[HA] = 10^(pH-pKa) = 10^(7.4 - 2.50) = 79433
[A⁻] = 79433[HA]
There is a much higher concentration of the conjugate base.
Similarly for lactic acid:
[A⁻]/[HA] = 10^(pH-pKa) = 10^(7.4 - 3.86) = 3467
[A⁻] = 3467[HA]
For lactic acid the conjugate base also dominates at pH 7.4
Fe2O3 + 3CO --------> 2Fe + CO2
1 : 3 : 2 : 3
13.3 <--- 40 ------> 26.6 ---> 40 ( mol)
n = m/M
m CO2 = n.M = 13.3 . 40 = 532 ( g)
p/s : i hope that this will help ( cause i'm not really good at english :}}} )