Answer:
molarity of diluted solution = 1.25 M
Explanation:
Using,
C1V1 (Stock solution) = C2V2 (dilute solution)
given that
C1 = 2.50M
V1 = 250ML
C2 = ?
V2 = 500ML
2.50 M x 250 mL = C2 x 500 mL
C2 = (2.50 M x 250 mL) / 500 mL
C2 = 1.25 M
Hence, molarity of diluted solution = 1.25 M
MH₂ = 2×mH = 2×1g = 2 g/mol
They all have densities greater than the density of the fluid in which they are<span>sinking. The mass of the displaced liquid is less than the mass of the sinking body.</span>
The mixture contains:
CaCO3 + (NH4)2CO3 in which the amount of carbonate CO3 = 60.7% by mass
Let, the total mass = 100 grams
Mass of CaCO3 = x grams
Mass of (NH4)2CO3 = y grams
Thus, x + y = 100 ------------(1)
Mass of CO3 = 60.7% = 60.7 g
Molar mass of CO3 = 60 g/mol
Total # moles of CO3 = 60.7 g/60 g.mol-1 = 1.012 moles
The total moles of CO3 comes from CaCO3 and (NH4)2CO3. Therefore,
moles CaCO3 + moles (NH4)2CO3 = 1.012
mass CaCO3/molar mass CaCO3 + mass (NH4)2 CO3/molar mass = 1.012
x/100 + y/96 = 1.012---------(2)
based on equation 1 we can write: y = 100-x
x/100 + (100-x)/96 = 1.012
x = 71.2 g
Mass of CaCO3 = 71.2 g