Answer:
6.25 moles of N₂ is produced, and 18.8 moles of Cu and H₂O is produced.
Explanation:
We are given the chemical equation:

And we want to determine the amount of products produced when 12.5 moles of NH₃ is reacted with excess CuO.
Compute using stoichiometry. From the equation, we can see the following stoichiometric ratios:
- The ratio between NH₃ and N₂ is 2:1. (i.e. One mole of N₂ is produced from every two moles of NH₃.)
- The ratio between NH₃ and Cu is 2:3.
- The ratio between NH₃ and H₂O is 2:3. (i.e. Three moles of H₂O or Cu is produced frome every two moles of NH₃.)
Dimensional Analysis:
- The amount of N₂ produced:

- The amount of Cu produced:

- And the amount of H₂O produced:

In conclusion, 6.25 moles of N₂ is produced, and 18.8 moles of Cu and H₂O is produced.
Among the choices provided, the statement that correctly describes the rusting process below is that "Oxygen was reduced over the course of this reaction" as <span> iron can't be the oxidizing agent, because it is the one being oxidized.
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions here.
</span>
Answer:
The amount left after 49.2 years is 3mg.
Explanation:
Given data:
Half life of tritium = 12.3 years
Total mass pf tritium = 48.0 mg
Mass remain after 49.2 years = ?
Solution:
First of all we will calculate the number of half lives.
Number of half lives = T elapsed/ half life
Number of half lives = 49.2 years /12.3 years
Number of half lives = 4
Now we will calculate the amount left after 49.2 years.
At time zero 48.0 mg
At first half life = 48.0mg/2 = 24 mg
At second half life = 24mg/2 = 12 mg
At 3rd half life = 12 mg/2 = 6 mg
At 4th half life = 6mg/2 = 3mg
The amount left after 49.2 years is 3mg.
In chemistry, there is a common note that says, "Like dissolves like".
This pertains to the concept that polar substances can dissolve only other polar substances. Also, nonpolar substances are also only able to dissolve nonpolar substances.
Polarity of the substance depends primarily on the type of bond and the difference in electronegativity.
Water is a polar substance while vegetable oil is not. From the concept presented above, it may be concluded that water will not be able to dissolve the vegetable oil and the assumption is logical.