The more protons you add, the more positively charged the atom becomes
the charge of an atom determines what kind of an atom it is <span />
This is somewhat of a misleading question, because all of these elements are necessary to convert motion into electricity at some point, but the generator is the last in line.
To find the chemical formula of an ionic compound, the first step is to find the charge of the 2 ions. As given already, the charge of sodium ion is 1+, and carbonate ion has a charge of 2-. We can picture it like that: Sodium ion loses 1 electron and carbonate ion gains 2.
The next step is to find how the 2 ions can lose and gain electrons equally. In this case, since each Na ion only loses 1 electron, it cannot satisfy the need of one carbonate ion, since they need 2, not 1. Therefore, 2 Na ions can cover the need of one carbonate ion. So, the ratio of Na to CO3 ion should be 2:1.
Now just combine the 2 ions, positive one at the front, which makes it NaCO3, make sure you do not add the charge and notice that CO3 is a molecule itself so do not remove the 3. Now because the ratio is 2:1, so the final formula is Na2CO3, no need to add 1 if the ratio is 1.
Your answer should be Na2CO3.
Answer:
The problem of energy exchange between waves and particles, which leads to energization of the latter, in an unstable plasma typical of the radiation belts. The ongoing Van Allen Probes space mission brought this problem among the most discussed in space physics. A free energy which is present in an unstable plasma provides the indispensable condition for energy transfer from lower energy particles to higher-energy particles via resonant wave-particle interaction. This process is studied in detail by the example of electron interactions with whistler mode wave packets originated from lightning-induced emission. We emphasize that in an unstable plasma, the energy source for electron energization is the energy of other particles, rather than the wave energy as is often assumed. The way by which the energy is transferred from lower energy to higher-energy particles includes two processes that operate concurrently, in the same space-time domain, or sequentially, in different space-time domains, in which a given wave packet is located. In the first process, one group of resonant particles gives the energy to the wave. The second process consists in wave absorption by another group of resonant particles, whose energy therefore increases. We argue that this mechanism represents an efficient means of electron energization in the radiation belts.
Explanation:
Fun facts:
In the process of energy transfer between two groups of particles both processes operate simultaneously, and if the lower energy part of plasma distribution gives energy to the wave while the higher‐energy part absorbs the wave enrgy, then the wave‐mediated energy transfer from lower energy particles to higher‐energy ...
Answer:
royal
Explanation:
royal is made of orange also