Answer:
Four times the original amount if only one orange was used
Explanation:
We can assume that the oranges all have equal voltages. Connecting them in series will have an increasing effect on the voltage delivered. In our case, this will produce 4 times the voltage of the circuit when only one orange is used.
Whenever simple cells are connected in series, the voltages of the individual cells are added up to form the voltage of the whole circuit.
Let us assume that the voltage of each of the oranges is approximately 0.9 volts. The Voltage produced when the 4 oranges are joined in series is 0.9 + 0.9 + 0.9 + 0.9 = 3.6 volts
<span>
<u><em>Answer:</em></u>The compound ammonia given by fish is alkaline
<u><em>Explanation:</em></u><u>We can classify elements/compounds based on their pH values into three types:</u>
<u>acids:</u> these are compounds having pH value lower than 7
<u>neutral:</u> these are compounds having pH value equal to 7
<u>alkalies:</u> these are compounds having pH values higher than 7
This is shown in the attached image
We are given that the pH of the compound ammonia generated by the fish is
above 7.
According to the above explanation, compound ammonia would be an alkaline compound.
Hope this helps :)</span>
Answer:
it would be option C
Explanation:
Speed of light = 3×10^8m/s
Planck's constant = 6.626×10^-34 Js
Wavelength = 8 x 10^-9 m
Energy = [(3×10^8) * (6.626×10^-34)] / 8 x 10^-9
Energy = [19.878×10^(8-34)] / 8 x 10^-9
Energy = 2.48475 × 10^(-26+9)
Energy = 2.48×10^-17 J
Answer:
Wave 2
Explanation:
Higher frequency means more energy per second, And wave 2 has higher frequesncy
please mark brainliest I’m almost at expert level
As per the law of constant composition, a given sample will always contain the same number of elements that combine in the same mass proportion.
Therefore if a sample of 13.97 g of NaBr contains 22.39 % of Na by mass then, a sample of 5.75 g of NaBr would also contain 22.39% Na by mass
Hence:
Mass of Na = 5.75 g * 22.39/100 = 1.287 g
5.75 g of NaBr would contain 1.29 g of Na