5.55 mol H2O
Explanation:
Water has a molar mass of 18.01528 g/mol. We can then calculate the number of moles of water as
100 g H20 × (1 mol H2O/18.01528 g H20)
= 5.55 mol H2O
<h3>
Answer:</h3>
pH = 5
<h3>
Explanation:</h3>
<u>We are given;</u>
- Concentration of a solution HI as 0.00001 M
We are required to calculate the pH of Hydronium ions.
- When the acid dissociates in water to;
HI + H₂O → H₃O⁺(aq) + I⁻(aq)
- The concentration of H₃O⁺ ions is 0.00001 M\
- We need to know that pH = -log[H₃O⁺]
Therefore;
pH =-log 0.00001 M
= 5
Thus, the pH of the hydronium ions is 5
Answer:
(a) the observed frequency is 200 Hz
(b) the observed frequency is 188 Hz.
Explanation:
speed of the truck, Vs = 27 m/s
frequency of the truck as it approaches, Fs = 185 Hz
(a) Apply Doppler effect to determine the frequency you will hear.
As the truck approaches you, the observed frequency will be higher than the source frequency because of decrease in distance.
![F_s = F_o [\frac{V}{V_S + V} ]](https://tex.z-dn.net/?f=F_s%20%3D%20F_o%20%5B%5Cfrac%7BV%7D%7BV_S%20%2B%20V%7D%20%5D)
Where;
Fo is the observed frequency which is the frequency you will hear.
V is speed of sound in air

(b) Apply the following formula for a moving observer and a moving source;
](https://tex.z-dn.net/?f=F_o%20%3D%20F_s%5B%5Cfrac%7BV-V_o%7D%7BV%7D%20%5D%28%5Cfrac%7BV%7D%7BV-V_S%7D%20%29)
The observed frequency is negative since you are driving away from the truck and the source frequency is also negative since it is driving towards you.
\\\\F_o = 185[\frac{340-22}{340} ](\frac{340}{340-27} )\\\\F_o = 185(0.9353)(1.0863)\\\\F_o = 188 \ Hz](https://tex.z-dn.net/?f=F_o%20%3D%20F_s%5B%5Cfrac%7BV-V_o%7D%7BV%7D%20%5D%28%5Cfrac%7BV%7D%7BV-V_S%7D%20%29%5C%5C%5C%5CF_o%20%3D%20185%5B%5Cfrac%7B340-22%7D%7B340%7D%20%5D%28%5Cfrac%7B340%7D%7B340-27%7D%20%29%5C%5C%5C%5CF_o%20%3D%20185%280.9353%29%281.0863%29%5C%5C%5C%5CF_o%20%3D%20188%20%5C%20Hz)