<span>The answer is C. temperature, light level, species of bacteria. All three variables are considerations regarding the reproduction rate of the bacteria. The other three answer choices can be eliminated easily because they each contain at least one irrelevant variable. In particular, all three contain a variable that makes reference to Jack's personal characteristics. These do not have any impact on the experiment and readily stand out to disqualify the entire answer choice.</span>
Based on Hooke's law, the spring constant of the the body's muscle mechanism is the ratio of force to extension, the effective mass is m/3 and the potential energy that can be stored is ke^2 / 2.
<h3>What is the spring constant?</h3>
The spring constant or stiffness constant of an elastic spring is constant which describes the extent a bit forceapplied to an elastic spring will extend it.
- Spring constant, K = force/extension
Assuming, a body's muscle mechanism is a spring obeying Hooke's law, the effective mass of the spring with mass m is 1/3 of the mass of the spring = m/3
The potential energy that can be stored = ke^2 / 2
where K is spring constant and e is the extension produced.
Therefore, the spring constant of the the body's muscle mechanism is the ratio of force to extension, the effective mass is m/3 and the potential energy that can be stored is ke^2 / 2.
Learn more about Hooke's law at: brainly.com/question/12253978
B. picking up a box off the floor
Answer:
52.47706 mph
54.5 mph
Explanation:
The average speed is given by


Julie's average speed on the way to Grandmother's house is 52.47706 mph

Average speed on the return trip is 54.5 mph
Voltage of each component is same.