Answer:
The lift coefficient is 0.3192 while that of the moment about the leading edge is-0.1306.
Explanation:
The Upper Surface Cp is given as

The Lower Surface Cp is given as

The difference of the Cp over the airfoil is given as

Now the Lift Coefficient is given as

Now the coefficient of moment about the leading edge is given as

So the lift coefficient is 0.3192 while that of the moment about the leading edge is-0.1306.
Answer:
(a) We are asked to compute the Brinell hardness for the given indentation. for HB, where P= 1000 kg, d= 2.3 mm, and D= 10 mm.
Thus, the Brinell hardness is computed as

![=2*1000hg/\pi (10mm)[10mm-\sqrt{(1000^2-(2.3mm)^2} ]](https://tex.z-dn.net/?f=%3D2%2A1000hg%2F%5Cpi%20%2810mm%29%5B10mm-%5Csqrt%7B%281000%5E2-%282.3mm%29%5E2%7D%20%5D)
(b) This part of the problem calls for us to determine the indentation diameter d which will yield a 270 HB when P= 500 kg.
![d=\sqrt{D^2-[D-\frac{2P}{(HB)\pi D} } ]^2\\=\sqrt{(10mm)^2-[10mm-\frac{2*500}{450( \pi10mm)} } ]^2](https://tex.z-dn.net/?f=d%3D%5Csqrt%7BD%5E2-%5BD-%5Cfrac%7B2P%7D%7B%28HB%29%5Cpi%20D%7D%20%7D%20%5D%5E2%5C%5C%3D%5Csqrt%7B%2810mm%29%5E2-%5B10mm-%5Cfrac%7B2%2A500%7D%7B450%28%20%5Cpi10mm%29%7D%20%7D%20%5D%5E2)
Answer:
Both model building codes and NFPA 220 can be used to determine the type of construction used in a building.
Answer:
Stat PVC = Stat(82+98.5)
Stat PVT = Stat(59+71.5)
Explanation
PVI = 71 + 35
Let G1 = Grade 1; G2 = Grade 2
G1 = +2.1% ; G2 = -3.4%
Highest point of curve at station = 74 + 10
General equation of a curve:

At highest point of the curve 


Station PVT

Answer:
Explanation:
neither of the technicians is correct