Answer:
Take E(alpha particle energy) = 5.5 MeV (5.5x106x1.6x10-19)
If the charge on the lead nucleus is +82e(atomic number of lead is 82) = +82x1.6x10-19 C and the charge on the alpha particle is +2e = 2x1.6x10-19 C
Using dc = (1/4πεo)qQ/Eα we have
dc = [9x10^9x(2x1.6x10-19x82x1.6x10-19)]/5.5x10-13 = 6.67x10^-13m. = 6.67 x 10^-13 x 10^15 = 6.67 x 10^2fm
Note: 1meter = 10^15fentometer
Explanation:
This is well inside the atom but some eight nuclear diameters from the centre of the lead nucleus.
To solve this we assume
that the gas is an ideal gas. Then, we can use the ideal gas equation which is
expressed as PV = nRT. At a constant temperature and number of moles of the gas
the product of PV is equal to some constant. At another set of condition of
temperature, the constant is still the same. Calculations are as follows:
P1V1 =P2V2
P2 = P1V1/V2
P2 = 740mmhg x 19 mL / 30 mL
<span>P2 = 468.67 mmHg = 0.62 atm</span>
Answer:
Examples of Chemical Changes
Burning wood.
Souring milk.
Mixing acid and base.
Digesting food.
Cooking an egg.
Heating sugar to form caramel.
Baking a cake.
Rusting of iron.
D, the more liquid there is, the less the temperature will be affected