Answer:
mechanical energy per unit mass is 887.4 J/kg
power generated is 443.7 MW
Explanation:
given data
average velocity = 3 m/s
rate = 500 m³/s
height h = 90 m
to find out
total mechanical energy and power generation potential
solution
we know that mechanical energy is sum of potential energy and kinetic energy
so
E =
×m×v² + m×g×h .............1
and energy per mass unit is
E/m =
×v² + g×h
put here value
E/m =
×3² + 9.81×90
E/m = 887.4 J/kg
so mechanical energy per unit mass is 887.4 J/kg
and
power generated is express as
power generated = energy per unit mass ×rate×density
power generated = 887.4× 500× 1000
power generated = 443700000
so power generated is 443.7 MW
The force required to pull one of the microscope sliding at a constant speed of 0.28 m/s relative to the other is zero.
<h3>
Force required to pull one end at a constant speed</h3>
The force required to pull one of the microscope sliding at a constant speed of 0.28 m/s relative to the other is determined by applying Newton's second law of motion as shown below;
F = ma
where;
- m is mass
- a is acceleration
At a constant speed, the acceleration of the object will be zero.
F = m x 0
F = 0
Thus, the force required to pull one of the microscope sliding at a constant speed of 0.28 m/s relative to the other is zero.
Learn more about constant speed here: brainly.com/question/2681210
Explanation:
If you write it in English so I can help u if you need it
If you were given distance & period of time, you would be able to calculate the speed.
Hope this helps!