Answer:
Mass, m = 26.54kg
Explanation:
Net force can be defined as the vector sum of all the forces acting on a body or an object i.e the sum of all forces acting simultaneously on a body or an object.
Mathematically, net force is given by the formula;
Where;
- Fapp is the applied force
- Fg is the force due to gravitation
<u>Given the following data;</u>
Net force, Fnet = 345
Acceleration, a = 3.2m/s²
<u>To find mass;</u>
Fnet = Fapp + Fg
Fnet = ma + mg
Fnet = m(a+g)
m = Fnet/(a+g)
We know that acceleration due to gravity, g = 9.8m/s²
Substituting into the equation, we have;
m = 345/(3.2 + 9.8)
m = 345/13
Mass, m = 26.54kg
Answer:
The water is stored in ice sheets and as snow
Explanation:
Temperature reduces with an increase in altitudes. The standard laps rate is 6.5°C per 1,000 m gained in elevation
At very high elevations, therefore, the air is usually very cold such that when an elevation of 4,500 meters is reached at the equator, it is possible to observe snowfall and the water remain temporarily stored on the surface of the mountain as ice and snow
Answer:
0.22 b
Explanation:
Quadrupole moment of the nucleon is,

And also,

And, 
Now,

For Bismuth
and A is 209.

Therefore, the expected value of quadrupole is 0.22 b which is quite related with experimental value which is 0.37 b
Answer:
73.5 m/s
Explanation:
The position of the first ball is:
y = y₀ + v₀ t + ½ at²
y = h + (0)(18) + ½ (-9.8)(18)²
y = h − 1587.6
The position of the second ball is:
y = y₀ + v₀ t + ½ at²
y = h + (-v) (18−6) + ½ (-9.8)(18−6)²
y = h − 12v − 705.6
Setting the positions equal:
h − 1587.6 = h − 12v − 705.6
-1587.6 = -12v − 705.6
1587.6 = 12v + 705.6
882 = 12v
v = 73.5
The second ball is thrown downwards with a speed of 73.5 m/s