Answer: increase in entropy
Explanation:
Entropy is the measure of randomness or disorder of a system. If a system moves from an ordered arrangement to a disordered arrangement, the entropy is said to decrease and vice versa.
is positive when randomness increases and
is negative when randomness decreases.
When the non polar solutes are placed in water, the hydrogen bonding network of water is disrupted, and there are fewer ways for water to hydrogen-bond with itself. That means the water molecules are more randomly arranged and thus have more entropy and thus
is positive.
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
JJ Thompson proved Electrons, so negative charge
Answer:
58.44 g/mol
Explanation:
In this problem, make sure to remember that volume is measured in mL, L or any other units of volume. Remember that g represents grams, and grams is a measure of mass.
However, independent of what mass or what volume we take, molar mass is known to be an intensive property. That is, molar mass doesn't depend on any external conditions or any measurements.
Molar mass solely depends on the chemical structure of a compound and is a constant number at any given conditions.
In this problem, we are given sodium chloride, NaCl. In order to find its molar mass, we need to refer to the periodic table, find the atomic masses of Na and Cl and then add them up to have the molar mass of NaCl:

Missing question:
A. [3.40 mol Fe2O3 (s) × 26.3 kJ/1 mol Fe2O3 (s)] / 2
<span>B. 3.40 mol Fe2O3 (s) × 26.3 kJ/1 mol Fe2O3 (s) </span>
<span>C. 26.3 kJ/1 mol Fe2O3 (s) / 3.40 mol Fe2O3 (s) </span>
<span>D. 26.3 kJ/1 mol Fe2O3 (s) – 3.40 mol Fe2O3 (s).
</span>Answer is: B.
Chemical reaction: F<span>e</span>₂O₃<span>(s) + 3CO(g) → 2Fe(s) + 3CO</span>₂<span>(g);</span>ΔH = <span>+ 26.3 kJ.
When one mole of iron(III) oxide reacts 26,3 kJ of energy is required and for 3,2 moles of iron(III) oxide 3,2 times more energy is required.</span>