Answer:
The pressure inside the container is 6.7 atm
Explanation:
We have the ideal gas equation: P x V = n x R x T
whereas, P (pressure, atm), V (volume, L), n (mole, mol), R (ideal gas constant, 0.082), T (temperature, Kelvin)
Since the container is evacuated and then sealed, the volume of the body of gas is the volume of the container.
So we can calculate the pressure by
P = n x R x T / V
where as,
n = 41.1 g / 44 g/mol = 0.934 mol
Hence P = 0.934 x 0.082 x 298 / 3.4 L = 6.7 atm
%(NaHCO3)= ((mass NaHCO3)/(mass NaHCO3 + mass water))*100%
m=Volume*Density
Density of water =1 g/ml
m(water) = Volume(water)*Density(water) = 600.0 ml * 1g/ml=600g water
%(NaHCO3)= ((20.0 g)/(20.0 g + 600 g))*100%=0.0323*100%=32.3%
Answer:
B
Explanation:
The most stable carbonation with OH on the adjacent carbon
Answer:
The correct answer is D
<u>18.016 g</u>
<u></u>
Explanation:
Molecular Weight : It is the sum of atomic weights of each atoms present in the compound.
The molecular weught is measured in atomic mass.unit( amu) or simply"u"
This is calculated by using :
Molecular weight = number of atom x atomic mass of the atom
For H2O
Number of H atoms = 2
Number of O atom = 1
Molecular weight of H2O = 2(mass of H atom) + 1(mass of O atom)
Molecular weight = 2(1.00784) + 15.999
= 18.01558 u
= 18.016 u