Answer:
Most radio waves have wavelengths between 1 mm and 100 km.
A cooling curve shows A. how the temperature of a substance falls as heat is removed.
Explanation:
<em>Radio waves</em> are the longest of all the waves in the electromagnetic spectrum.
Most have wavelengths between 1 mm and 100 km, although there is no upper limit.
Some radio waves have wavelengths of 10 000 km.
A <em>cooling curve</em> (see image below) shows how the temperature of a substance falls as it is cooled.
In Option E., a decrease in temperature would cause an energy <em>loss</em>.
Options B., C., and D. involve the <em>addition of heat</em>.
Answer:
The answer is "
"
Explanation:
We arrange oxoacids to decrease the intensity of acids in this question. Or we may conclude all this from strongest to weakest acids they order oxoacids, that's why above given order is correct.
Let A be the 80% solution and B be the 20% solution and P be the produce solution of 70%. Va and Vb and Vp are the volumes of A and B and P respectively.
Va + 60 = Vp
0.7Vp = 0.8Va + 0.2(60)
Substituting the value of Vp from the first equation:
0.7(Va + 60) = 0.8Va + 12
30 = 0.1Va
Va = 300 gallons
Answer:
Ka = 4.76108
Explanation:
- CO(g) + 2H2(g) ↔ CH3OH(g)
∴ Keq = [CH3OH(g)] / [H2(g)]²[CO(g)]
[ ]initial change [ ]eq
CO(g) 0.27 M 0.27 - x 0.27 - x
H2(g) 0.49 M 0.49 - x 0.49 - x
CH3OH(g) 0 0 + x x = 0.11 M
replacing in Ka:
⇒ Ka = ( x ) / (0.49 - x)²(0.27 - x)
⇒ Ka = (0.11) / (0.49 - 0.11)² (0.27 - 0.11)
⇒ Ka = (0.11) / (0.38)²(0.16)
⇒ Ka = 4.76108
The <span>epithelial hold the skin together.</span>