Explanation:
In vector geometry, the resultant vector is defined as: “A resultant vector is a combination or, in simpler words, can be defined as the sum of two or more vectors which has its own magnitude and direction.”
I hope it's helpful!
Answer:
410 m
Explanation:
Given:
v₀ = 20.5 m/s
a = 0 m/s²
t = 20 s
Find: Δx
Δx = v₀ t + ½ at²
Δx = (20.5 m/s) (20 s) + ½ (0 m/s²) (20 s)²
Δx = 410 m
Answer:
Mass of bullet is m=0.01kg
Mass of the block is M=4kg
Coefficient=0.25,distance=20m
So, let the speed of the block just after the bullet embedded in it be V and v be the speed of bullet before striking the block,
By applying conservation of momentum,
mv=(m+M)V
V=
M+m
mv
Explanation:
please mark me as the brainliest answer and please follow me for more answers to your questions..
The x -component of the object's acceleration is 2 m/s².
<h3>What's the resultant force along x- direction?</h3>
- Forces along x axis direction are as follows
- 4N along +x axis, so it's taken as +4 N
- 2N along -x axis , so it's taken as -2N.
- Resultant force along x direction = 4N - 2N = 2 N which is along + ve x direction.
<h3>What's the acceleration along x axis direction?</h3>
- As per Newton's second law, Force = mass × acceleration of the object
- Force along x axis= mass × acceleration along x axis= 2N
- Acceleration = 2/ mass = 2/1 = 2 m/s²
Thus, we can conclude that the acceleration along x axis is 2 m/s².
Disclaimer: The question was given incomplete on the portal. Here is the complete question.
Question: The forces in (Figure 1) are acting on a 1.0 kg object. What is ax, the x-component of the object's acceleration?
Learn more about the acceleration here:
brainly.com/question/460763
#SPJ1
Gravity lets all objects fall to the ground at the same speed, 9.8 m/s/s. If the force of gravity were stronger, such as 10 m/s/s, the rate of acceleration would be faster.