Answer:
what do you mean by this?
Explanation:
Do all you can in one big day that you have time off or work on one thing then work on the other at the same time
The impulse experienced by the object is 3 N s.
<u>Explanation:</u>
Impulse is also termed as change in the momentum of the object. So, it is directly proportional to the force acting on the object and the time for which the force is acting on that object.
Thus, impulse experienced by an object is the product of force acting on the object for a given time period. So, it is the sudden influence of force on the given volume.
As the force is given as 30 N and the duration or the time is given as 0.1 seconds. Then, the impulse will be product of force with duration.
Impulse = Force × ΔTime = Force × Duration
Impulse = 30 × 0.1 = 3 N s.
Thus, the impulse experienced by the object is 3 N s.
Answer: v = 0.6 m/s
Explanation: <u>Momentum</u> <u>Conservation</u> <u>Principle</u> states that for a collision between two objects in an isolated system, the total momentum of the objects before the collision is equal to the total momentum of the objects after the collision.
Momentum is calculated as Q = m.v
For the piñata problem:


Before the collision, the piñata is not moving, so
.
After the collision, the stick stops, so
.
Rearraging, we have:


Substituting:

0.6
Immediately after being cracked by the stick, the piñata has a swing speed of 0.6 m/s.
Complete question:
(b) How much energy must be supplied to boil 2kg of water? providing that the specific latent heat of vaporization of water is 330 kJ/kg. The initial temperature of the water is 20 ⁰C
Answer:
The energy that must be supplied to boil the given mass of the water is 672,000 J
Explanation:
Given;
mass of water, m = 2 kg
heat of vaporization of water, L = 330 kJ/kg
initial temperature of water, t = 20 ⁰C
specific heat capacity of water, c = 4200 J/kg⁰C
Assuming no mass of the water is lost through vaporization, the energy needed to boil the given water is calculated as;
Q = mc(100 - 20)
Q = 2 x 4200 x (80)
Q = 672,000 J
Q = 672,000 J
Q = 672,000 J
Therefore, the energy that must be supplied to boil the given mass of the water is 672,000 J