In a transformer, energy is carried from the primary coil to the secondary coil by magnetic field in the iron core.
To find the answer, we have to know more about the transformer.
<h3>
How transformer works?</h3>
- An item utilized in the transfer of electric energy is a transformer.
- AC current is used for transmission.
- It is frequently used to modify the supply voltage between circuits without altering the AC frequency.
- The fundamentals of mutual and electromagnetic induction govern how the transformer operates.
- Magnetic field through the primary coil changes when primary coil current varies. the iron core of the secondary coil likewise has a magnetic field.
- EMF is therefore generated in the secondary coil.
Thus, we can conclude that, in a transformer, energy is carried from the primary coil to the secondary coil by magnetic field in the iron core.
Learn more about the transformer here:
brainly.com/question/26787198
#SPJ4
Answer:
s = 20 m
Explanation:
given,
mass of the roller blader = 60 Kg
length = 10 m
inclines at = 30°
coefficient of friction = 0.25
using conservation of energy
u = 9.89 m/s
Using second law of motion
ma =μ mg
a = μ g
a = 0.25 x 9.8
a = 2.45 m/s²
Using third equation of motion ,
v² - u² = 2 a s
0² - 9.89² = 2 x 2.45 x s
s = 20 m
the distance moved before stopping is 20 m
Answer:
B
Explanation:
because atoms make up an element.
Answer : The wavelength of photon is, 
Explanation : Given,
Energy of photon = 
Formula used :

As, 
So, 
where,
= frequency of photon
h = Planck's constant = 
= wavelength of photon = ?
c = speed of light = 
Now put all the given values in the above formula, we get:


Conversion used : 
Therefore, the wavelength of photon is, 