1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
FromTheMoon [43]
3 years ago
9

Identify the three types of isometric transformations. A. reflection, rotation, translation B. reflection, rotation, dilation C.

reflection, dilation, translation D. dilation, rotation, translation
Physics
1 answer:
inessss [21]3 years ago
4 0
<span>reflection, rotation, translation</span>
You might be interested in
What is the oxidation state of a hydrogen atom bound to an iron atom.?
tresset_1 [31]
the answer is rust so the answer is rust
8 0
3 years ago
An electron accelerated from rest through a voltage of 780 v enters a region of constant magnetic field. part a part complete if
maxonik [38]
The electron is accelerated through a potential difference of \Delta V=780 V, so the kinetic energy gained by the electron is equal to its variation of electrical potential energy:
\frac{1}{2}mv^2 =  e \Delta V
where
m is the electron mass
v is the final speed of the electron
e is the electron charge
\Delta V is the potential difference

Re-arranging this equation, we can find the speed of the electron before entering the magnetic field:
v= \sqrt{ \frac{2 e \Delta V}{m} } = \sqrt{ \frac{2(1.6 \cdot 10^{-19}C)(780 V)}{9.1 \cdot 10^{-31} kg} }=1.66 \cdot 10^7 m/s


Now the electron enters the magnetic field. The Lorentz force provides the centripetal force that keeps the electron in circular orbit:
evB=m \frac{v^2}{r}
where B is the intensity of the magnetic field and r is the orbital radius. Since the radius is r=25 cm=0.25 m, we can re-arrange this equation to find B:
B= \frac{mv}{er}= \frac{(9.1 \cdot 10^{-31}kg)(1.66 \cdot 10^7 m/s)}{(1.6 \cdot 10^{-19}C)(0.25 m)} =3.8 \cdot 10^{-4} T
3 0
3 years ago
Assuming the carbon cycle is a closed system, which of the following statements is true?
ella [17]
Please add answer options :)
5 0
3 years ago
Read 2 more answers
What is the maximum magnitude of charge that can be placed on each plate if the electric field in the region between the plates
34kurt

The given question is incomplete. The complete question is as follows.

A parallel-plate capacitor has capacitance C_{0} = 8.50 pF when there is air between the plates. The separation between the plates is 1.00 mm.

What is the maximum magnitude of charge that can be placed on each plate if the electric field in the region between the plates is not to exceed 3.00 \times 10^{4} V/m?

Explanation:

It is known that relation between electric field and the voltage is as follows.

             V = Ed

Now,  

              Q = CV

or,           Q = C \times Ed

Therefore, substitute the values into the above formula as follows.

              Q = C \times Ed

                  = 8.50 pF \times (\frac{10^{-12} F}{1 pF})(3 \times 10^{4} m/s)(1 mm)(\frac{10^{-3} m}{1 mm})

                  = 2.55 \times 10^{-10} C

Hence, we can conclude that the maximum magnitude of charge that can be placed on each given plate is 2.55 \times 10^{-10} C.

3 0
3 years ago
A girl rolls a ball up an incline and allows it to re- turn to her. For the angle and ball involved, the acceleration of the bal
zalisa [80]

Answer:

3.28 m

3.28 s

Explanation:

We can adopt a system of reference with an axis along the incline, the origin being at the position of the girl and the positive X axis going up slope.

Then we know that the ball is subject to a constant acceleration of 0.25*g (2.45 m/s^2) pointing down slope. Since the acceleration is constant we can use the equation for constant acceleration:

X(t) = X0 + V0 * t + 1/2 * a * t^2

X0 = 0

V0 = 4 m/s

a = -2.45 m/s^2 (because the acceleration is down slope)

Then:

X(t) = 4*t - 1.22*t^2

And the equation for speed is:

V(t) = V0 + a * t

V(t) = 4 - 2.45 * t

If we equate this to zero we can find the moment where it stops and begins rolling down, that will be the highest point:

0 = 4 - 2.45 * t

4 = 2.45 * t

t = 1.63 s

Replacing that time on the position equation:

X(1.63) = 4 * 1.63 - 1.22 * 1.63^2 = 3.28 m

To find the time it will take to return we equate the position equation to zero:

0 = 4 * t - 1.22 * t^2

Since this is a quadratic equation it will have to answers, one will be the moment the ball was released (t = 0), the other will eb the moment when it returns:

0 = t * (4 - 1.22*t)

t1 = 0

0 = 4 - 1.22*t2

1.22 * t2 = 4

t2 = 3.28 s

7 0
3 years ago
Other questions:
  • A kayaker needs to paddle north across a 100-m-wide harbor. The tide is going out, creating a tidal current that flows to the ea
    9·1 answer
  • You have a string with a mass of 0.0133 kg. You stretch the string with a force of 8.89 N, giving it a length of 1.97 m. Then, y
    14·1 answer
  • Why did corn borers increase after the fields were sprayed for beetles?
    8·2 answers
  • Which object is accelerating downward at the slowest rate? (1 point)
    8·1 answer
  • Which cells in the immune system identify pathogens and distinguish one pathogen from another?
    10·2 answers
  • Pls help asap
    13·2 answers
  • A horizontail rod (oriented in the east -west direction) is moved northward at a constant velocity through a magnetic field that
    11·1 answer
  • Las carreras de velocidad pura en el atletismo son:
    12·1 answer
  • Explain how to convert a galvanometer to an ammeter
    12·1 answer
  • Can you please help me​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!