Answer:
1.395M NaOH
Explanation:
Sodium hydroxide, NaOH, reacts with nitric acid, HNO3, as follows:
NaOH + HNO3 → NaNO3 + H2O
<em>Where 1mol of NaOH reacts with 1mol of HNO3</em>
To solve this question we must find the concentration of the titrant. With the concentration and the needed acid we can find the moles of HNO3 added = moles NaOH in the solution. With the moles of NaOH and its volume we can find its concentration as follows:
<em>HNO3 concentration:</em>
10.00mol/L HNO3 * (125.0mL/500.0mL) = 2.500M HNO3
<em>Moles HNO3 = Moles NaOH:</em>
16.74mL = 0.01674L*(2.500mol/L) = 0.04185 moles HNO3 = Moles NaOH
<em>Concentration NaOH:</em>
0.04185 moles / 0.0300L =
1.395M NaOH
B. Sand.
Sand would definitely increase friction because of the roughness of it surface. When its surface comes with another rough surface it would tend to increase friction. All other options given tend to reduce friction one way or the other.
Answer:
Attached below
Explanation:
Free energy of mixing = ΔGmix = Gf - Gi
attached below is the required derivation of the
<u>a) Molar Gibbs energy of mixing</u>
ΔGmix = Gf - Gi
hence : ΔGmix = ∩RT ( X1 In X1 + X2 In X2 + X3 In X3 + ------- )
<u>b) molar excess Gibbs energy of mixing</u>
Ni = chemical potential of gas
fi = Fugacity
N°i = Chemical potential of gas when Fugacity = 1
ΔG = RT In ( a2 / a1 )
Must contain: 6 protons, 6 electrons and 12 neutrons.
Increase in heat, molecules start to escape and it turns to vapor