The only thing that definitely happens in every such case is:
The container becomes heavier.
When two or more waves meet, they interact with each other. The interaction of waves with other waves is called wave interference. Wave interference may occur when two waves that are traveling in opposite directions meet. The two waves pass through each other, and this affects their amplitude.
Assume the motion when you are in the car or in the school bus to go to the school.
To describe the motion the first thing you need is a point of reference. Assume this is your house.
This should be a description:
- When you are sitting and the car has not started to move you are at rest.
- The car starts moving from rest, gaining speed, accelerating. You start to move away from your house, with a positive velocity (from you house to your school) and positive acceleration (velocity increases).
- The car reaches a limit speed of 40mph, and then moves at constant speed. The motion is uniform, the velocity is constant, positive, since you move in the same direction), and the acceleration is zero.
- When the car approaches the school, the driver starts to slow down. Then, you speed is lower but yet the velocity is positive, as you are going in the same direction. The acceleration is negative because it is in the opposite direction of the motion.
- When the car stops, you are again at rest: zero velocity and zero acceleration.
- In all the path your velocity was positive, constant at times (zero acceleration) and variable at others (accelerating or decelerating).
- When you comeback home, then you can start to compute negative velocities, as you will be decreasing the distance from your point of reference (your house).
Answer:
See explanation below
Explanation:
The equation to use for this is the following:
dU = q + w
As the heat is being release, this value is negative, and same here happens with the work done, because it's in the surroundings.
Therefore the change in the energy would be:
dU = -2.59x10^4 - 6.46^4
dU = -9.05x10^4 kJ
Answer:
some common devices that use current carrying conductors and magnetic fields are electric motor electric generator loudspeakers microphones and measuring instruments like galvanometer ammeter and voltmeter