Answer:
7772.72N
Explanation:
When u draw your FBD, you realize you have 3 forces (ignore the force the car produces), gravity, normal force and static friction. You also realize that gravity and normal force are in our out of the page (drawn with a frame of reference above the car). So that leaves you with static friction in the centripetal direction.
Now which direction is the static friction, assume that it is pointing inward so
Fc=Fs=mv²/r=1900*15²/55=427500/55=7772.72N
Since the car is not skidding we do not have kinetic friction so there can only be static friction. One reason we do not use μFn is because that is the formula for maximum static friction, and the problem does not state there is maximum static friction.
Answer:
20.The first factor is the amount of charge on each object. The greater the charge, the greater the electric force. The second factor is the distance between the charges. The closer together the charges are, the greater the electric force is
Explanation:
Answer:
the time taken t is 9.25 minutes
Explanation:
Given the data in the question;
The initial charge on the supercapacitor = 2.1 × 10³ mV = 2.1 V
now, every minute, the charge lost is 9.9 %
so we need to find the time for which the charge drops below 800 mV or 0.8 V
to get the time, we can use the formula for compound interest in basic mathematics;
A = P × ( (1 - r/100 )ⁿ
where A IS 0.8, P is 2.1, r is 9.9
so we substitute
0.8 = 2.1 × ( 1 - 0.099 )ⁿ
0.8/2.1 = 0.901ⁿ
0.901ⁿ = 0.381
n = 9.25 minutes
Therefore, the time taken t is 9.25 minutes
You have to do the math of each and see which one adds up to 66.5
Answer:
After 4 s of passing through the intersection, the train travels with 57.6 m/s
Solution:
As per the question:
Suppose the distance to the south of the crossing watching the east bound train be x = 70 m
Also, the east bound travels as a function of time and can be given as:
y(t) = 60t
Now,
To calculate the speed, z(t) of the train as it passes through the intersection:
Since, the road cross at right angles, thus by Pythagoras theorem:


Now, differentiate the above eqn w.r.t 't':


For t = 4 s:
