<span>A chemical bond is a lasting attraction between atoms, ions or molecules that enables the formation of chemical compounds. The bond may result from the electrostatic force of attraction between oppositely charged ions as in ionic bonds; or through the sharing of electrons as in covalent bonds.
</span>
The air would contract therefore the answer is the second choice.
pigsExplanation: population
Answer: MR²
is the the moment of inertia of a hoop of radius R and mass M with respect to an axis perpendicular to the hoop and passing through its center
Explanation:
Since in the hoop , all mass elements are situated at the same distance from the centre , the following expression for the moment of inertia can be written as follows.
I = ∫ r² dm
= R²∫ dm
MR²
where M is total mass and R is radius of the hoop .
When you talk about Hooke's law, it always have to do something with springs. Hooke's Law, from Robert Hooke, saw a relation between the force applied to the spring and the extension of its length. The equation is: F = kx, where k is the spring constant and x is the displacement of the original and stretched lengths. In other words, x is the length of deformation. Hence, the object must be elastic to come up with a displacement or deformation, in the first place. Then, the Hooke's Law is only applicable to elastic materials.