Answer:
D.diamond
Explanation:
Refraction occurs due to the bending of light rays as they pass from one medium to another. The light rays bend as their speed changes as they pass from one medium to another. The more the speed changes, the more the light bends and therefore more refraction occurs. When light passes from air to the diamond, the speed of light decreases more than any of the other materials listed in the given choices. So the light rays slow down the most diamond and so most refraction occurs in diamond.
Answer:
Explanation:
i dont speak arbic so ill take the points
Answer:
a) When R is very small R << r, therefore the term R+ r will equal r and the current becomes
b) When R is very large, R >> r, therefore the term R+ r will equal R and the current becomes
Explanation:
<u>Solution :</u>
(a) We want to get the consumed power P when R is very small. The resistor in the circuit consumed the power from this battery. In this case, the current I is leaving the source at the higher-potential terminal and the energy is being delivered to the external circuit where the rate (power) of this transfer is given by equation in the next form
P=∈*I-I^2*r (1)
Where the term ∈*I is the rate at which work is done by the battery and the term I^2*r is the rate at which electrical energy is dissipated in the internal resistance of the battery. The current in the circuit depends on the internal resistance r and we can apply equation to get the current by
I=∈/R+r (2)
When R is very small R << r, therefore the term R+ r will equal r and the current becomes
I= ∈/r
Now let us plug this expression of I into equation (1) to get the consumed power
P=∈*I-I^2*r
=I(∈-I*r)
=0
The consumed power when R is very small is zero
(b) When R is very large, R >> r, therefore the term R+ r will equal R and the current becomes
I=∈/R
The dissipated power due toll could be calculated by using equation.
P=I^2*r (3)
Now let us plug the expression of I into equation (3) to get P
P=I^2*R=(∈/R)^2*R
=∈^2/R
A good way to determine the property of a substance would be it's boiling and melting point, its conductivity, and how hard or soft that substance is.