Answer:
C = 4,174 10³ V / m^{3/4}
, E = 7.19 10² / ∛x, E = 1.5 10³ N/C
Explanation:
For this exercise we can calculate the value of the constant and the electric field produced,
Let's start by calculating the value of the constant C
V = C
C = V / x^{4/3}
C = 220 / (11 10⁻²)^{4/3}
C = 4,174 10³ V / m^{3/4}
To calculate the electric field we use the expression
V = E dx
E = dx / V
E = ∫ dx / C x^{4/3}
E = 1 / C x^{-1/3} / (- 1/3)
E = 1 / C (-3 / x^{1/3})
We evaluate from the lower limit x = 0 E = E₀ = 0 to the upper limit x = x, E = E
E = 3 / C (0- (-1 / x^{1/3}))
E = 3 / 4,174 10³ (1 / x^{1/3})
E = 7.19 10² / ∛x
for x = 0.110 cm
E = 7.19 10² /∛0.11
E = 1.5 10³ N/C
Answer:
option D
Explanation:
given,

increase the intensity by factor of 9
I₁ = I₀
I₂ = 9 I₀
now,




A₂ = 3 A₁
hence, amplitude increase with the factor of 3
so, the correct answer is option D
<span>The specific heat (or the amount of heat required to raise the temperature of a unit mass of a substance by 1 degree Celsius) of copper is about 0.386 J/g/degree Celsius. This means that if we supply 0.386 J of energy to 1 gram of copper, its temperature will increase by 1 degree Celsius.</span>
It mimics the real world accurately
Explanation:
Experiments conducted in the field clearly presents the real world at it is to the scientist. Hardly can any part be controlled precisely and this gives a near to perfect scenario.
- In the laboratory, for example, an organism is isolated from its environment and might not fully display its natural instinct and physiological capabilities.
- Most laboratory set up are driven towards a model instead of real life settings.
- The laboratory is more controlled and less varied and might truly represent the real world. It will only portray a part of the real world and series of further tests might have to be carried out to have a better model.
Learn more:
Experiment brainly.com/question/5096428
#learnwithBrainly