Compared to coffee at room temperature, the molecules of the coffee at 34°C will be moving faster and colliding with one another more frequently.
Setting reference frame so that the x axis is along the incline and y is perpendicular to the incline
<span>X: mgsin65 - F = mAx </span>
<span>Y: N - mgcos65 = 0 (N is the normal force on the incline) N = mgcos65 (which we knew) </span>
<span>Moment about center of mass: </span>
<span>Fr = Iα </span>
<span>Now Ax = rα </span>
<span>and F = umgcos65 </span>
<span>mgsin65 - umgcos65 = mrα -------------> gsin65 - ugcos65 = rα (this is the X equation m's cancel) </span>
<span>umgcos65(r) = 0.4mr^2(α) -----------> ugcos65(r) = 0.4r(rα) (This is the moment equation m's cancel) </span>
<span>ugcos65(r) = 0.4r(gsin65 - ugcos65) ( moment equation subbing in X equation for rα) </span>
<span>ugcos65 = 0.4(gsin65 - ugcos65) </span>
<span>1.4ugcos65 = 0.4gsin65 </span>
<span>1.4ucos65 = 0.4sin65 </span>
<span>u = 0.4sin65/1.4cos65 </span>
<span>u = 0.613 </span>
From the calculations, the value of the acceleration due to gravity is 0.38 m/s^2.
<h3>What is weight?</h3>
The weight of an object is obtained as the product of the mass of the body and the acceleration due to gravity.
Thus;
When;
mass = 120 kg
weight = 46 N
acceleration due to gravity = 46 N/120 kg
=0.38 m/s^2
Learn more about acceleration due to gravity :brainly.com/question/13860566
#SPJ1
Answer:
force becomes one - ninth
Explanation:
According to Coulomb's law in electrostatics, two charges can exert a force of attraction or repulsion on each other which is directly proportional to the product of two charges and inversely proportional to the square of distance between them.
Here both the charges remains same but the distance is variable.
So, we can say that
.... (1)
Where d be the distance between the tow charges
As the distance between two charges increases by factor of three, let the new force be F'.
.... (2)
Divide equation (2) by equation (1), we get


Thus, the force becomes one - ninth times the initial force.
Answer:
The rock will reach 9 m from the ground at eaxactly 5.06 s after it was initially thrown upwards.
Explanation:
We will use the equations of motion for this.
u = initial velocity of the rock = 22 m/s
g = acceleration due to gravity = -9.8 m/s²
y = vertical position of the rock at a time t = 9 m
y₀ = initial height of the rock = 25 m
t = time it takes for the rock to reach height of 9 m.
(y-y₀) = ut + 0.5gt²
(9 - 25) = 22t + 0.5(-9.8)t²
- 14 = 22t - 4.9t²
4.9t² - 22t - 14 = 0
solving this quadratic equation,
t = 5.055 s or - 0.565 s
Since time cannot be negative,
t = 5.055 s = 5.06 s
Hope this Helps!!!