MgCl2 is ionic compound.........Mg +2 and Cl -1
both charges are cross multiplied to each element......formula tells us that to balance the positive and negative charges on both sides they are cross multiplied........MgCl2......meaning there is one atom of Mg and 2 atoms of Cl.......
HOPE IT HELPS !!!
Answer:
A) some of the rocks energy is transformed to thermal energy
Explanation:
If we neglect air resistance during the fall of the rock, than the mechanical energy of the rock (which is sum of its potential energy and its kinetic energy) would be constant during the entire motion, so the total energy of the rock at the top would be the same as the sum of its potential energy and kinetic energy at the bottom.
However, this not occurs, due to the presence of air resistance. In fact, air resistance acts against the fall of the rock, and because of the friction between the molecules of air and the surface of the rock, the rock loses part of its energy. This energy is converted into thermal energy of the molecules of the air.
Answer:
14.57 ohms
Explanation:
Here in the figure ,Rb & R₄are in series & also Rc & R₅ are in series. As they are in series , ( Rb + R₄ ) & (Rc & R₅) are in parallel . So the equivalent resistance in that branch = ( 2 + 18 ) ║ ( 3 + 12 )
= 20 ║ 15
= (20×15) / (20 + 15)
= 8.57 ohms
Also Ra ( 6 ohm ) is in series with that branch ,. So the equivalent resistance of the whole circuit = 8.57 + 6 = 14.57 ohms.
<u>Answer;</u>
<em>Spring constant </em>
<u>Explanation;</u>
The measure of a spring’s resistance to being compressed or stretched is the <u>spring constant</u>.
- The symbol of spring constant is K, since it is a constant. From the Hooke's law,for a helical spring or any elastic material, the extension force is directly proportional to the extension provided the elastic limit is not exceeded.
- Therefore; the spring constant = Force/extension. That is; K = F/e; where k is the spring constant, F is the extension force and e is the extension.
- Spring constant depicts the resistance of the spring to compressional and stretching forces.