<span>O + Na + Cl = NaClO
Reactants :
O -> </span><span>Oxygen
</span><span>
Na -> Sodium
Cl-> Chlorine
hope this helps!
</span>
Answer:
Atoms of tellurium (Te) have the greatest average number of neutrons equal to 76.
Explanation:
In the periodic table, Elements are represented with their respected symbols. Above the symbol is the elements atomic number which is equal to the number of protons in each atom. Below the symbol is the mass number of that element which is roughly equal to the sum of neutrons and protons of that atom.
To calculate the number of neutrons we can take the difference of Atomic number and mass number:
Number of neutrons = mass number - atomic number
<u>- Tin:</u>
Atomic number = 50
Mass number = 119
Number of neutrons = mass number - atomic number = 119 - 50
Number of neutrons = 69
<u>- Antimony(Sb):</u>
Atomic number = 51
Mass number = 122
Number of neutrons = mass number - atomic number = 122 - 51
Number of neutrons = 71
<u>- Tellurium(Te):</u>
Atomic number = 52
Mass number = 128
Number of neutrons = mass number - atomic number = 128 - 52
Number of neutrons = <u>76</u>
<u>- Iodine(I):</u>
Atomic number = 53
Mass number = 127
Number of neutrons = mass number - atomic number = 127 - 53
Number of neutrons = 74
Here, the greatest number of neutrons is for the atoms of Tellurium(Te).
Answer:
The phase constant is 7.25 degree
Explanation:
given data
mass = 265 g
frequency = 3.40 Hz
time t = 0 s
x = 6.20 cm
vx = - 35.0 cm/s
solution
as phase constant is express as
y = A cosФ ..............1
here A is amplitude that is =
=
= 6.25 cm
put value in equation 1
6.20 = 6.25 cosФ
cosФ = 0.992
Ф = 7.25 degree
so the phase constant is 7.25 degree
Answer:
The value is 
Explanation:
From the question we are told that
The magnitude of the horizontal force is 
The mass of the crate is 
The acceleration of the crate is 
Generally the net force acting on the crate is mathematically represented as

Here
is force of kinetic friction (in N) acting on the crate
So

=> 
A gentle slope requires less force over a longer distance as compared to steep slope.
Explanation:
Mechanical advantage of a slope is equal to the ratio of length of slope and the height. A steep slope has shorter length as compared to a gentle slope for the same height. Therefore, mechanical advantage of a gentle slope is more than that of a steep slope. Hence, a gentle slope requires less force over a long distance than a steep slope.