Answer:
5 electron groups, see saw
Explanation:
During the formation of SF4, the sulfur atom usually bonds with each of four fluorine atoms where 8 of valence electrons are used. The four fluorine atoms have 3 lone pairs of electrons in its octet which will further utilize 24 valence electrons. In addition, two electrons are present as a lone pair on the sulfur atom. We can determine sulfur’s hybridization state by counting of the number of regions of electron density on sulphur (the central atom in the molecule). When bonding takes place there is a formation of 4 single bonds to sulfur and it has 1 lone pair. Looking at this, we can say that the number of regions of electron density is 5. The hybridization state is sp3d.
SF4 molecular geometry is seesaw with one pair of valence electrons. The molecule is polar. The equatorial fluorine atoms have 102° bond angles instead of the actual 120° angle. The axial fluorine atom angle is 173° instead of the actual 180° bond angle.
The equation for carbon-14 emission by Radium-223 nuclei is given below:

<h3>What is radioactivity?</h3>
Radioactivity is the spontaneous decay of a substance with emission of radiation.
The equation for carbon-14 emission by Radium-223 nuclei is given below:

In conclusion, the emission of carbon-14 by Radium-223 nuclei produces Lead-209 nuclei.
Learn more about radioactivity at: brainly.com/question/3603596
#SPJ1
Image C is adhesion stronger and Image D is cohesion stronger
Answer:
intermolecular forces prevents ice cubes from adopting the shape of their container. i hope it helps you.
Answer:
electrophile(H⁺) is needed to react with alkene in the first step and nucleophile (OH⁻) is not available in the first step
Explanation: